ADA-145 989 4

DARCOM PAMPHLET | | DARCOM-P 706-103.

URR«'." | . 10N
RES . H0 L
93940

NAV ‘
MONTEREL:

| ENGINEERING DESIGN
HANDBOOK -

SELECTED TOPICS IN EXPERIMENTAL STATISTICS
WITH ARMY APPLICATIONS

~US ARMY MATERIEL DEVELOPMENT AND READINESS COMMAND / DECEMBER 1983
g




DARCOM-P 706-103

DEPARTMENT OF THE ARMY
HEADQUARTERS US ARMY MATERIEL DEVELOPMENT
AND READINESS COMMAND
5001 Eisenhower Avenue
Alexandria, VA 22333
DARCOM PAMPHLET DECEMBER 1983
No. 706-103
ENGINEERING DESIGN HANDBOOK
SELECTED TOPICS IN EXPERIMENTAL STATISTICS WITH ARMY APPLICATIONS

TABLE OF CONTENTS

Paragraph Page
LIST OF ILLUSTRATIONS ..ottt e X
LIST OF TABLES ...ttt e e e e e X
PREFACE ... e e e e et ee e e oo xiii
LIST OF ABBREVIATIONS AND ACRONYMS ..ot XV
CHAPTER 1
INTRODUCTION TO CONTENTS OF THE HANDBOOK
1-1 INTRODUCTION ...ttt e ee e e e 1-1
1-2 OVERVIEW OF THE HANDBOOK ......coooviiiiitiie oo 1-1
CHAPTER 2

ERRORS OF MEASUREMENT, PRECISION, ACCURACY AND THE STATISTICAL
COMPARISON OF MEASURING INSTRUMENTS

2-0 LIST OF SYMBOLS ..ottt 2-1
2-1 PRELIMINARY BACKGROUND STATEMENT .......coootiteimeeeeeeeoeoeeoee o 2-5
2:2 INTRODUCTION AND CONCEPT FORMULATION .....cooooeoeeeeooeoeoo 2-6
2-3 MEASUREMENTS WITH A SINGLE INSTRUMENT ......ccooviimimmmieooeeo 2-8
2-4 THE SEPARATION OF PRODUCT VARIABILITY AND

IMPRECISION OF MEASUREMENT WITH TWO INSTRUMENTS ovoovioeo 2-11
2-4.1 BASIC OUTLINE AND APPROACH ......coooooviiiiieieeeeeeee oo 2-11
2-4.2 TREATMENT OF NEGATIVE OBSERVED VARIANCES .....c.oooooooo 2-15
243 A SIGNIFICANCE TEST ON IMPRECISION BASED ON

TWO INSTRUMENTS ...t 2-17

2-4.4 VARIANCES OF ESTIMATORS OF IMPRECISION OF I, AND Ly..oovvovooo 2-18
2-5 THE SEPARATION OF PRODUCT VARIABILITY AND

INSTRUMENT IMPRECISION WITH THREE INSTRUMENTS ...ovoooooe 2-20
2-6 SIGNIFICANCE TESTS FOR PRECISION AND ACCURACY OF

TWO INSTRUMENTS ...t ettt e, 2-23
2-6.1 PRELIMINARY COMMENTS ON SIGNIFICANCE TESTS

FOR TWO INSTRUMENTS ..ottt oo 2-23

2-6.2 TEST OF WHETHER 0. = 0., (PRECISION COMPARISON)........ccovvvoveoerrn. 2-24
2-6.3 TEST OF WHETHER Bi = B (ACCURACY TEST) ..o 2-25
2-6.4 LARGE SAMPLE TEST OF WHETHER oe, OR 0., EQUALS ZERO ..................... 2-27
2-6.5 TEST FOR WHETHER o., = ko., AND SHUKLA’S TEST .....c.coovvvvneeroeeersesennn 2-27
2-7 SIGNIFICANCE TESTS FOR THREE INSTRUMENTS ....oovovomoveioeooeo oo 2-29
2-7.1 INTRODUCTORY REMARKS ....ccoiiiiiiiiiiii s 2-29
2-71.2 THREE-INSTRUMENT TEST OF WHETHER e 2-30



DARCOM-P 706-103
TABLE OF CONTENTS (cont’d) |
Paragraph Page ‘
2-7.3 THREE-INSTRUMENT TEST OF WHETHER e, = ko, (SHUKLA’S TEST)....... 2-30
2-7.4 JUDGMENT PROCEDURES FOR TESTING A THIRD INSTRUMENT ............. 2-32
2-8 CONFIDENCE BOUNDS ON THE UNKNOWN PRECISION AND
ACCURACY PARAMETERS, AND ALLIED ACCOMPLISHMENTS .o 2-34
2-8.1 CONFIDENCE BOUNDS ON (B, — 8;) FOR TWO INSTRUMENTS oo 2-34
2-8.2 CONFIDENCE BOUNDS ON [8; — (8, + B2)/2] FOR
THREE INSTRUMENTS ....ccoiuiiiniiiiiiieeoeeee e oo 2-34
2-8.3 PRELIMINARY COMMENTS ON CONFIDENCE BOUNDS FOR
PRECISION PARAMETERS .....cooiiiimtiiiiiicee oo eeeeee oo 2-34
2-8.4 CONFIDENCE BOUNDS ON PRECISION PARAMETERS FOR TWO
JUNISTTR RO ) N T ool e ST S P 2-35
2-8.5 CONFIDENCE BOUNDS ON PRECISION PARAMETERS FOR
THREE INSTRUMENTS .....coooiiiiiiitiiieeeeeeeee oo 2-37
2-8.5.1 Confidence Bounds on 033/[(&51 + oﬁz)/2] ................................................................ 2-37 |
2-8.5.2 Simultaneous Confidence Bounds On All Unknown Precision Parameters............. 2-37 |
2-8.5.3 Duplicate Measurements With One of Two Instruments |
and Allied RESUILS.........vuirreeeee oo oo 2-38 ‘
2-8.54 Shukla’s Three-Instrument Bounds for Gz, (G, . e S e B 2-39
2-9 MEASUREMENTS WITH A GENERAL NUMBER ‘N =3 OF INSTRUMENTS....... 2-40
2-10 INTERLABORATORY TESTING FOR PRECISION AND ACCURACY 1
SIUDIES .. L e 2-43
2-11 THE HIERARCHY OF CALIBRATIONS AND THE ACCUMULATION
OF ERRORs. ... ..o s, o oms, ommmmst e o e 0 2-46
2-12 ADDITIONAL DISCUSSION OF FUNDAMENTALS OF MEASUREMENT ........ 2-49
2-13 SUMMARY oot 2-50
REBETENCES ..ot ie s ooseiieestssirne Ea el do e oo onmen seeo e mmen s e BB 2-51
BIDHOGraphy ..o e 2-52
CHAPTER 3
PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS
3-0 LIST OF SYMBOLS ... 3-1 <
3-1 INTRODUCTION ...t 3-3
3-2 PRELIMINARIES AND MATHEMATICAL BOUNDS OF INTEREST. ... . 3-4 .
3-2.1 DESIGNATION OF THE SAMPLE ......oooovoomooooooo 3-4
3-2.2 BOUNDS FOR THE RATIO OF THE SAMPLE RANGE TO THE
SAMPLE STANDARD DEVIATION......coooiiiioiieioe oo 3-5
3-2.3 BOUNDS FOR THE RESIDUALS OR DEVIATIONS FROM THE
SAMPLE MEAN ..o e 3-6 |
3-3 SOME RELATIONSHIPS AND SAMPLING DISTRIBUTIONS FOR
SAMPLES OF SIZE TWO OR THREE ........coooiiiiiii oo 3-8
3-3.1 RELATION BETWEEN THE RANGE AND STANDARD
DEVIATION FOR A SAMPLE OF SIZE TWO ...ccoooiiooe oo 3-8
3-32 THE RANGE FOR SAMPLES OF SIZE THREE AND PROPERTIES OF
THE TWO CLOSEST OF THREE OBSERVATIONS ..o 39
34 BASIS OF STATISTICAL CRITERIA FOR OUTLIERS .ooovooeooe oo 3-11
3-5 RECOMMENDED OUTLIER DETECTION CRITERIA FOR
SINGLE SAMPLES L. e e e 3-12
3-5.1 TESTS FOR EITHER THE HIGHEST OR LOWEST OBSERVATION ..o 3-12

ii



DARCOM-P 706-103

TABLE OF CONTENTS (cont’d)

Paragraph Page
3-5.2 DIXON’S CRITERIA oo oottt et e ae e e e e e e e e e e e 3-16
3-53 OUTLIER TEST FOR SMALLEST AND LARGEST OBSERVATIONS................ 3-18
3-54 SIGNIFICANCE TESTS FOR THE TWO HIGHEST OR THE TWO LOWEST
OBSERV AT TON S L et et e e ee e e e e e ee e aes 3-21
3-5.5 SIGNIFICANCE TEST FOR DETECTING SEVERAL OR
MANY OUTLIERS ... oottt ee e ae e e s aae e e 3-26
3-5.5.1 Preliminary COMMENTS . ...coc.uierierirciiiieeeeiieie e e et ree e e et e e e eatrbeseee e ereeeeeeeeeeeeeeeens 3-26
3-55.2 The Tietjen and MoOoOTe TeStS.....ouuiiiiiiriciiiee et e e et e e e e e e s see e aeeeneas 3-26
3-5.5.3 The Rosner and Hawkins Multiple Outlier Detection Procedures .......ccoovevvueevevnnnn... 3-28
3-554 The Skewness and Kurtosis Tests fOr OULHETS ..uu.utiveeieeiieee oo eeee e 3-37
3-6 RECOMMENDED OUTLIER TESTS USING INDEPENDENT
STANDARD DEVIATION ESTIMATORS ..ot eeeeeaveeeaaa s 3-40
3-7 RECOMMENDED CRITERIA FOR KNOWN STANDARD DEVIATION................ 3-51
3-8 THE WILK-SHAPIRO STATISTICAL TEST FOR NONNORMALITY ...cccocoevnnnn.... 3-54
39 PROBABILITY PLOTS AND GRAPHICAL TECHNIQUES........ccocvevveiiieeeeeeen. 3-54
3-10 ADDITIONAL COMMENTS AND GUIDELINES ..ottt oo 3-55
3-11 SUMMARY Lot e et e et e e e e e et e ettt s ettt e sbe e eeen sanssan s eeaseeaeeeeee eesnenans sees 3-56
RETETEICES ...ttt e e e e te e s e e s ettt e e e e e ee e e e ee e e vesessnaeanes 3-56
BIDHOZIAPRY ...ooviiiiiiii it et ettt et ettt e st en e e 3-58
CHAPTER 4

SELECTED TOPICS IN ESTIMATION, THE COMMON STATISTICAL TESTS
OF SIGNIFICANCE, AND THE CHOICE OF PERCENTAGE POINTS

4-0 LIST OF SYMBOLS ...ttt et s et eeeenae s 4-1
4-1 PNIER OB ETIOMN o0 12l e BB 22 S5 o0 Sl « 555 o s o350 e s e o S o S e oo s 4-5
4-2 PRELIMINARY REMARKS ON SAMPLING A SINGLE NORMAL
POPULATION ..ottt sttt te et et et e e s st eeeeneseeeee e eaes 4-6

4-2.1 THE SAMPLE MEAN AND STANDARD DEVIATION ......cocoovviiiiiinineeeeeeeen 4-6
4-2.2 THE SAMPLE MEAN DEVIATION ....ooiiiiiiiiiiie et et 4-8
4-2.3 THE SAMPIEEIRA NG E 8 o 00 o S Sl s 4-10
4-2.4 BIASED OR UNBIASED ESTIMATORS AND EFFICIENCY .....ccoovviiveveneeenn. 4-12
4-3 SOME MOMENT PROPERTIES........coiiiiiiiiiiriiiieiie ettt et eee e ees e 4-14
4-4 THE CHI-SQUARE DISTRIBUTION AND SOME OF ITS USES ...ovvevivieeeeeeenn. 4-15
4-4.1 THE CHI-SQUARE DISTRIBUTION ... oottt s 4-15
4-4.2 CHI-SQUARE, BINOMIAL, AND POISSON DISTRIBUTION

RELATIONSHIPS ..ottt ettt sttt eee e e e e 4-17
443 SIGNIFICANCE TEST FOR THE SIZE OF A NORMAL POPULATION

B R N e . e e R O gy S D ) 4-18
4-4.4 CONFIDENCE BOUNDS ON THE UNKNOWN POPULATION

VARIANCE OR STANDARD DEVIATION. ..ottt 4-18
4-4.5 THE APPROXIMATE CHI-SQUARE DISTRIBUTION .......cccoooiivimeneeneeeeeeneennn, 4-25
4-5 THE SNEDECOR-FISHER VARIANCE RATIO OR F DISTRIBUTION................... 4-26
4-6 SIGNIFICANCE TESTS FOR THE EQUALITY OF SEVERAL

POPULATION VARIANCES ..ottt e aae e 4-33

4-6.1 PRELIMINARY REMARKS .....ooiiiiit ittt 4-33
4-6.2 BARTLETT'S STATISTIC ...ttt et e e 4-33
4-6.3 COCHRANS STATISTIC ...ttt e et e e e eenas 4-34
4-6.4 HARTLEY’S STATISTIC ...oiiiiiiiiiie ettt e e e e e e e e e 4-34
4-6.5 CADWELL’S STATISTIC. ...ttt ittt et et 4-34

iii



DARCOM-P 706-103

Paragraph
4-6.6
4-6.7
4-6.8

4-7

4-7.1
4-7.2

4-7.3
4-7.3.1
4-7.3.2
4-8

4-9
4-10

4-11
4-12

TABLE OF CONTENTS (cont’d)

CONFIDENCE BOUNDS ON THE UNKNOWN NORMAL
POPULATION MEAN

INTRODUCTORY DISCUSSION OF DESIGN AND ANALYSIS OF
EXPERIMENTS ...ttt sieeetnet et sttt s enen e e e eae e e oo oo

COMBINATION OF OBSERVED TAIL AREA PROBABILITES FOR
INDEPENDENT EXPERIMENTS

CHAPTER §

INTRODUCTION TO SOME MODERN ANALYSES OF CONTINGENCY TABLES

5-3

5-3.1
5-3.2
5-3.3
5-34
5-3.5
5-3.6
5-4

5-6
5-7
5-7.1
5-7.2
5-7.3

5-8

LIST OF SYMBOLS ...ttt et e e s s
INTRODUCGTION Lot e
SAMPLING A SINGLE BINOMIAL POPULATION WITH A SAMPLE
OF SIZE Aottt et s ettt st et e et e eoteae st eane e esessessossoesses
THE 2X2 CONTINGENCY TABLE WITH EMPHASIS ON COMPARING TWO
BINOMIAL POPULATIONS ..ottt

INDEPENDENCE AND INTERACTION IN 2X2 CONTINGENCY TABLES
SOME DEFINITIONS OF SYMBOLS FOR GENERAL CONTINGENCY
IENBIRESIL B9, ot .. oo ... . s e A e O .
THE KULLBACK MINIMUM DISCRIMINATION INFORMATION
SITASNISITHC Spro,  scomiiosre. . soptionmn o, motind, N0 8 SSSESS mo .
SOME RELATED TOPICS AND THE POWER OF 2X2 CONTINGENCY
TABLES ... ettt e e e et e e ees e
THE GENERAL TWO-WAY CONTINGENCY TABLE (r Rows and ¢ Columns).........
INTRODUCTORY FORMULATION ....ooiiiiiiiiiiiiiiie e
THE CLASSICAL CHI-SQUARE ANALYSIS OF TWO-WAY
CONTINGENCY TABLES ..ottt
KULLBACK’S INFORMATION THEORY ANALYSIS OF TWO-WAY
(CASBIRESE. ... 8. B . S e
COMMENTS ON THE ANALYSIS OF THREE-WAY AND HIGHER
ORDER CONTINGENCY TABLES ......oooitiiiiiiiiteeee et




DARCOM-P 706-103

Paragraph
5-10

6-0
6-2
6-2.1
6-2.2
6-2.3
6-2.4

6-2.5
6-3

6-3.1

6-3.2
6-4

6-6

6-7

6-8

6-9

TABLE OF CONTENTS (cont’d)

Page
SU MM A R Y oot e e e e e et e e ee et e e a et aaetraeaaeans 5-44
REETETEIICES . vve e ee e ettt e et ee et e e et eee s sae et ve s ass e e s bn eaeesas eaeeaen sasseneaeseenneansnnnasnveen 5-45
BIDHOZIAPRY Lottt e 5-46
CHAPTER 6
LEAST SQUARES, REGRESSION, AND FUNCTIONAL RELATIONS
LIST OF SYMBOLS oottt e e e e et e e e ae e et e e e e e e et e e e e e e st e e e e 6-1
INTRODUCTION Lottt ettt e et es e s e ate e ese et aeae s et aae s e aaa tee st aeeeranaeesranaaennnaaesnen 6-4
LINEAR LEAST SQUARES OR REGRESSION FOR A DEPENDENT
VARIABLE (MEASURED WITH ERROR) AND AN INDEPENDENT
VARIABLE (WITHOUT ERROR) ..ot 6-5
GENERAL .ottt ettt e e et ee et e e e e e et aa e e e e e ae e e ae e eratn aans 6-5
THE LINE—ONE VARIABLE (y) SUBJECT TO ERROR ......cccceiiiiiiiiiiiene e, 6-5
USE OF DEVIATIONS FROM THE MEAN ..o 6-11
TRANSFORMATION OF ORIGINAL DATA FOR LINEAR
LEAST SQUARES. ... ettt e 6-12
EQUAL SPACING OF THE INDEPENDENT VARIABLE ... 6-13
LINEAR REGRESSION AND FUNCTIONAL RELATIONS—BOTH VARIABLES
SUBJECT TO ERROR, BUT INDEPENDENT VARIABLE CONTROLLED............ 6-14
PRELIMINARIES TO ESTABLISH “FREE OF ERROR”
IN INDEPENDENT VARIABLE ....oooioiiii et et e e e e 6-14
THE CONCEPT OF A CONTROLLED INDEPENDENT VARIABLE.................... 6-15
LINEAR LEAST SQUARES WITH BOTH VARIABLES SUBJECT TO
ERROR AND BOTH VARIABLES RANDOM ... e, 6-21
BIASES IN ESTIMATION AND BIASES IN SIGNIFICANCE TESTS
DUE TO ERRORS IN THE INDEPENDENT VARIABLE .......coooiiiiiiieeeee, 6-22
A CONSISTENT ESTIMATOR OF THE SLOPE IN A LINEAR
REGRESSION MODEL WITH ERRORS IN BOTH INDEPENDENT
AND DEPENDENT VARIABLES ..o et 6-23
THE PLANE: ONE VARIABLE z (THE DEPENDENT VARIABLE)
SUBJECT TO ERROR ...ttt ettt et e e s e e s e e e e v ees e aes e 6-25
THE PARABOLA: ONE VARIABLE z (THE DEPENDENT VARIABLE)
SUBJECT TO ERROR ... ettt et e 6-29
THE REGRESSION OF A DEPENDENT VARIABLE (SUBJECT TO ERROR) ON
THREE INDEPENDENT VARIABLES (FREE OF ERROR).....ccoiiiiiiiiiiiiice, 6-32
FITTING OF ORTHOGONAL POLYNOMIALS FOR THE CASE IN
WHICH OBSERVED VALUES OF THE INDEPENDENT VARIABLE
ARE AT EQUALLY SPACED INTERVALS . .....ccocoiiiiiiiiiiiii i 6-34
MULTIPLE REGRESSION OR THE GENERAL LINEAR MODEL ......................... 6-45
IN T R O DU C T T IO N L oottt ettt te e ettt te e e e tee et e aae e e ete sen s e s eae e e aeneaeaeeeaneeeeeaas 6-45
THE GENERAL LINEAR REGRESSION MODEL ......coooiiiiiiiiiiieeeeeeee e, 6-45
FUNCTIONAL RELATIONS AND NONLINEAR REGRESSION OR
GENERALIZED LEAST SQUARES (WITH OR WITHOUT ERROR IN
INDEPENDENT VARIABLES) . oottt e s 6-50
INTRODUGCTION ..ottt e e et e et e e et e e e et e et e e eetre e e e e e e e e e 6-50
THE GALLANT ALGORITHM (ERROR-FREE INDEPENDENT
VARIABLES) ..ottt et ettt e e e e s et sttt cre s e et aeecae s e e e 6-51

THE BRITT AND LUECKE ALGORITHM FOR ESTIMATING
PARAMETERS IN NONLINEAR MODELS WITH ERRORS IN
BOTH THE DEPENDENT AND INDEPENDENT VARIABLES..............occoo 6-53



DARCOM-P 706-103

TABLE OF CONTENTS (cont’d)

Paragraph Page

6-13 SUMM A R Y e e e et eee et ee e et e e e eeee ettt reteeee ree e e v ae e aenaees 6-55
RETEIEIICES ..ottt e et et ettt e et e e et e 6-55
BIBO SEAONT . 2. - . . oo o SO . S S ... S S S, , AR S, 6-56

Appendix 6A
A Least Squares Application to Precision and Accuracy of Measurement

6A-0 LIST OF SYMBOLS oo e et 6A-1
6A-1 PRELIMINARY REMARKS .ot e e e 6A-1
6A-2 ACCOUNT OF THE INTERNATIONAL OZONE ROCKET SONDE
' INTERCOMPARISON (IORI) STATISTICAL ANALYSIS oo e, 6A-2
6A-2.1 THE THREE-INSTRUMENT APPROACH (CONSTANT BIASES)...oooiveveeenennnn. 6A-2
6A-2.2 ESTIMATION WHEN INSTRUMENTAL BIASES CHANGE WITH
ALTITUDE OR OZONE LEVEL ..ot e et aea 6A-6
6A-3 GENERAL COMMENT ON LINEAR REGRESSION WITH ERRORS
IN BOTH VARIABLES ..o e e e e e e 6A-12
RETEIEIICES oovvvniiiieeee et e e e e e, 6A-12
CHAPTER 7
ORDER STATISTICS AND APPLICATIONS
7-0 LIS T OF S Y M BO LS Lo e e e e e e e 7-1
7-1 INTRODUCGTION oottt e ettt et e e e e e e e e e e e e e e e e e e eae vans 7-3
7-2 THE DISTRIBUTION OF THE LARGEST AND SMALLEST SAMPLE VALUES,
THE DISTRIBUTION OF THE RANGE, AND THE rth ORDER STATISTIC.........7-5
7-3 THE QUASI-RANGES ..o e e et ettt et 7-7
7-4 EXPECTED VALUES AND MOMENTS OF SAMPLE ORDER STATISTICS .........7-8
7-5 LINEAR ESTIMATION OF POPULATION PARAMETERS OR MOMENTS........... 7-9
7-6 DISCUSSION OF TABLES AND SOME EXAMPLES ..o, 7-9
7-7 SOME RELATIONS AND USES OF ORDER STATISTICS WITH
RESPECT TO ALLIED STATISTICAL PROBLEMS ...ouiiiio e 7-14
7-7.1 SOME PARTICULAR USES OF ORDER STATISTICS ..cooonieei e 7-14
7-7.2 STATISTICS OF EXTREMES oot ves e 7-21
7-7.3 GUMBEL’S EXTREME VALUE DISTRIBUTION ..ottt oo 7-23
7-7.4 ORDER STATISTICS AND OUTLYING OBSERVATIONS........oooviiviiiieiee 7-24
7-7.5 UNIVARIATE TOLERANCE INTERVALS Lo eeee e 7-25
7-8 ORDER STATISTICS AND THE RELATED FIELDS OF RELIABILITY
AND LIFE TESTING ..ot ettt e e e e e e e e e 7-34
7-9 THE RADIAL ORDER STATISTICS AND THEIR APPLICATIONS
TO TARGET AN ALY SES oottt e e e e e re e 7-35
7-10 PARAMETER ESTIMATION FROM TRUNCATED FIRINGS AT
RECTANGULAR TARGETS ..o o e e e 7-43
7-11 PARAMETER ESTIMATION FOR TRUNCATED POISSON SAMPLES
WITH MISSING ZEROS ..ot e e e e 7-49
7-12 SUMDMARY Lottt e et e e et e es bt e e s taa e esaa e es e e e e nae s 7-51
R EIEIICES .o ittt e e ettt e e e e 7-52
CHAPTER 8
DETERMINATION OF SAMPLE SIZES
8-0 LIST OF SYMBOLS oo e 8-1
8-1 INTRODUGTION oonii i e e e et eee et e e es it e e ettt e s st e e st e ee e e 8-3

vi



DARCOM-P 706-103

TABLE OF CONTENTS (cont’d)

Paragraph Page
8-2 THE ROLE OF THE NORMAL DISTRIBUTION IN SAMPLE SIZE
DETERMINATION ..ottt e oo oo 8-5
8-3 SAMPLE SIZES AND CRITERIA FOR BINOMIAL- AND POISSON-TYPE
I DYANT V&S g Soion oo BEOOO000EIE w000 ToooDB00000 A moe e T TR T 8-8
8-3.1 SAMPLING A SINGLE BINOMIAL OR POISSON POPULATION.......ooovvivivivn, 8-8
8-3.2 SAMPLE SIZES TO COMPARE TWO BINOMIAL OR TWO
POISSON POPULATIONS ... e e e e 8-16
8-4 SAMPLE SIZES FOR VARIANCE ESTIMATION AND
COMPARISONS L.ttt e e e e e e e e e 8-18
8-4.1 SAMPLING A SINGLE NORMAL POPULATION TO ESTIMATE
SIGMA L ettt e e e e e e e oo e e et 8-18
8-4.2 CHI-SQUARE SAMPLE SIZES FOR CONTINGENCY TABLES
OR FOR CURVE FITTING ..oooiiiiiiiiii e, 8-21
8-5 SAMPLE SIZES FOR COMPARING TWO NORMAL POPULATIONS
VARIANCGES ... et e v e e e e e e e e e oo 8-24
8-6 SAMPLE SIZES FOR ESTIMATION OF NORMAL POPULATION MEANS .......... 8-28
8-6.1 SAMPLE SIZES FOR MAKING INFERENCES ABOUT THE SIZE
OF A NORMAL POPULATION MEAN ....oriiioiie oo oo 8-28
8-6.2 SAMPLE SIZES FOR COMPARING THE MEANS OF TWO
NORMAL POPULATIONS ...ttt 8-33
8-7 POWER FUNCTION AND SAMPLE SIZES FOR THE ANALYSIS OF
VIARIANGENRESTISY. 598 B e N 8-36
8-8 SOME ADDITIONAL DISCUSSION ON SAMPLE SIZE DETERMINATION FOR
ATTRIBUTE AND NORMAL POPULATION SAMPLINGS ..oooooooeeoeoee 8-40
8-9 SAMPLE SIZES FOR EXPONENTIAL POPULATIONS ..oooooooeeeee oo 8-41
8-10 SUMMARY ...t e e e e 8-44
RYETERETICE ST, .. ... i . ..o 8-45
BIBLIOGraphy ....ooiiiiii i e e 8-46
CHAPTER 9
SENSITIVITY ANALYSES OF QUANTAL RESPONSE TYPE DATA
9-0 L 3 B O B B 51 R . e e D L 1 e e 9-1
9-1 INTRODUCTION L.ttt e e 9-3
9-2 BRIEF ANALYTICAL FORMULATION OF SENSITIVITY ANALYSES...oooooo . 9-4
9-3 SOME USEFUL TEST STRATEGIES ..ottt 9-6
9-3.1 THE COMPLETE RUNDOWN TEST ..ottt 9-7
9-3.2 THE UP AND DOWN TEST OF DIXON AND MOOD .......oooiooiiooeoeo 9-7
9-3.3 THE LANGLIE ONE-SHOT STRATEGY ...ccooiimieiteeeoeeeee oo 9-8
9-34 THE ROBBINS-MONRO STOCHASTIC APPROXIMATION METHOD .............. 9-9
9-3.5 THE ONE-SHOT TRANSFORMED RESPONSE TEST STRATEGY (OSTR)........ 9-11
9-3.6 TRANSFORMED RESPONSE STRATEGIES FOR GENERAL 7o uvvooevooooe 9-13
9-4 ESTIMATION OF PARAMETERS .....ooiiiiioiie oo 9-14
9-4.1 MAXIMUM LIKELIHOOD ESTIMATION FOR THE NORMAL MODEL .......... 9-15
9-4.2 MAXIMUM LIKELIHOOD ESTIMATION FOR THE LOGISTIC"®
DISTRIBUTION L...ooiit ittt e 9-18
9-4.3 MAXIMUM LIKELIHOOD ESTIMATION FOR THE WEIBULL MODEL .........9-22
9-5 SOME REMARKS ON ALLIED WORK ......cooootiioaiooeeeo oo 9-29
9-6 SUMMARY ..o e e et 9-34
RETETEIICES ...ttt 9-34
BIbLIOZIraphy . ....ooiiii it 9-35



DARCOM-P 706-103

TABLE OF CONTENTS (cont’d)

Paragraph Page
Appendix 9A

Computer Program 9-1 9A-1
Appendix 9B

Computer Program 9-2 9B-1
CHAPTER 10

THE ROLE OF THE STATISTICIAN IN SCIENTIFIC MODEL BUILDING:
ILLUSTRATED FOR THE LIMIT VELOCITY PROBLEM

10-0 LIST OF SYMBOLS ......oooiiiiiiiiini et 10-1
10-1 INTRODUCTION ...t 10-1
10-2 DESCRIPTION OF THE PHYSICAL AND STATISTICAL ASPECTS

OF THE PROBLEM.......oiiiiiiiiiiiiiinei oo e 10-2
10-2.1 BRIEF ACCOUNT OF THE PHYSICAL AND ENGINEERING DETAILS ............ 10-2
10-2.2 THE STATISTICAL APPROACH ........cooviiiiiieeeeoeeeeeeeeeeoeoeoe oo 10-7
10-3 DISCUSSION OF THE STATE OF THE ART OF PHYSICAL AND

STATISTICAL ESTIMATION OF LIMIT VELOCITY .oovovoovooeooooooo 10-11
10-4 SRUB UGN o S B B B e LI pp—— 10-12

REFEIENCES .ot 10-13
CHAPTER 11

INTRODUCTION TO SELECTED TOPICS IN MULTIVARIATE
STATISTICAL ANALYSIS

11-0 LHST OERSHINIBOIES o e i N SO, o DGR T, 11-1
11-1 INTRODUGTION ......oootiiiticimemcrintineersinia et srerasosenssseeensessssesemsssssses st eeessenssesesseseeee e 11-3
11-2 TESTS FOR EQUALITY OF POPULATION MEANS, EQUALITY OF
VARIANCES, AND EQUALITY OF COVARIANCES FOR
MULTIVARIATE NORMAL DISTRIBUTIONS .....ocoovoommiomoooooo 11-4
11-3 SELECTED TOPICS AND APPLICATIONS OF HOTELLING’S
MULTIVARIATE STUDENTIZED  RATIOS AND GENERALIZED
T? STATISTICS ..ot 11-10
11-3.1 HOTELLING’S GENERALIZATION OF THE STUDENT-FISHER
QRASNIOSpm.. .o 00 0 e SRS N N e 11-10
11-3.2 HOTELLING’S GENERALIZED T? STATISTICS ..o 11-13
11-4 SIUNIVIARNG: ... B o o e .. v, e SO il B Bl o, 11-36
80 U5 qgtsoa o M I R T T e e B N 11-37
INDEX

viil



DARCOM-P 706-103

LIST OF ILLUSTRATIONS

Figure
No. Title Page
2-1  Schematic Representation of Hierarchies of Military Standards Laboratories Using

National Bureau of Standards Calibration SErviCes .............oovvivviivviriniiiiieieeereeeeeeeerevenanns 2-47
4-1  959% Confidence Limits for Each Proposal.........c.ccoeeeiiiiiiiiiiiiii e 4-56
5-1  Confidence Limits for p in Binomial Sampling, Given a Sample Fraction r/n........ccc.......... 5-6
6-1 Residual Velocity vs Striking Velocity of Projectiles..........ccvvvvuie iviveieiirieieeieere e, 6-17
7-1  Graphs of Population Coverage for the Tolerance Level 8=0.90......cccccoevvmvvimvirereeernennannn. 7-27
7-2  Graphs of Population Coverage for the Tolerance Level B=0.95.......c.cccoivrrirvrirriiiiinrinnnn. 7-28
7-3  Graphs of Population Coverage for the Tolerance Level 8 =0.99.......cccocoovivviiviiiniiniiiiinnn. 7-29
7-4  Schematic Diagram of Target and Areas of Missing Rounds............cccccvevieeeeieeeieeeiveeeeeenenene. 7-45
8-1 Number of Tests vs Improvement in Reliability..........cccveviiiiieiiriiciiiiiiieeeee e 8-15
8-2  Operating Characteristics of the y’-Test [xz = l”__zlﬁ]

For Testing o) = o Against 01> 0 ......5....cce..n.. L ool o M EH 8-22
8-3  Operating Characteristics of the x*Test [xz = in_—zlﬁ_]

For Testing o, = ¢ Against o, < o.....5.............. ST NPT 8-23

1

8-4  Operating Characteristics of the F-Test F = % For

Testing o, = 0, Against g, > 0, (11 = ny) 52 ................................................................... 8-26

8-5  Operating Characteristics of the ¢-Test for ¢
For Testing gt = @ ABAINSt 4 7 Gueeioeiiieieeeees o e T 8-30

I
—
E‘
=
|
2
L

8-6  Operating Characteristics of the Normal Test z = [A@ZL__")_]

For Testing 4 = a@ Against 7 @....ccovveeeceeeee b G o 8-32
1
s
8-7  Operating Characteristics of the F-Test [ = % For
52
Testing o1 = 0, Against 61 > 02 (11 = M2, 201 = 312, M1 = 210 ueeieeeeieiieeeee e 8-39
9-1 A Typical Up and Down EXPETIMENt .....cc.coiiiiiiiiiiirieiiesietcoinieeeeeie e eee e oo et ee e 9-7
9-2  *“One-Shot” Test to Determine Failure of Thermal Batteries............ccccoevvvvviviereesieooiieeeeenn. 9-9
10-1  Plot of Typical Residual and Striking Velocities for a Penetrator Against Armor ................ 10-4
10-2  Linear Relationship Between Specific Impact Energy and Scaled Armor Thickness............. 10-5

ix



DARCOM-P 706-103

Table

2-7
2-8
2-9

3-2

3-4

3-5
3-6

3-8

3-9

3-10
3-11
3-12
3-13
3-14

3-15
3-16
3-17
3-18
3-19
3-20
4-1

4-2

4-4
45
4-6

LIST OF TABLES

Title

Burning Times of 30 Powder Train FUzZes, s .....ocoooviiiiiiriiioe e
Fuze Burning Times and Differences in SECONAS .....ovvieiiiiiiiiii i e e
Nonnegative Variance Estimates (The Two-Instrument Case)......co..covveioveiivieineereveeenesennnn,
Estimates of Precision of Measurement on Three Simultaneous Velocity Measurements of
the Fotobalk, Counter, and Terma Chronographs .......c.cccueieiveiiiieeie e
Simultaneous Velocities of the Fotobalk, Counter, and Terma Chronographs With Test vs
Standard Comparative Data on Each of Twelve Successive Rounds, m/s............c..c.........
Values of K'and M Which Yield (I — 2a) Confidence Regions When Used in Conjunction
With Equations 2-83 Through 2-85........ccocoiiiiiiiii e
One-Way ANOVA Classification For Lead in Gasoline ...........c.coouveeveeeoeeeseeeeeeseoin,
ANOVA Table. ..o e et
Critical Values for 7'(One-Sided Test of T} or T,) When the Standard Deviation is Calcu-
lated From the Same Sample .......ccooiiiniiiiiiiiiii e e e
Dixon Criteria for Testing of Extreme Observation (Single Sample) .......ccccoeevvvvevveeeenn.
Critical Values for w/s (Ratio of Range to Sample Standard Deviation).............ccoevovvn.....
Critical Values for Sy-1,/S” or S}, for Simultaneously Testing the Two Largest or Two
SMallest OBSEIVAIONS ...ccouuiiiiiiiiiiei it e et eeae et ettt et ee e e ee e e e e e e eeees s e eee e
Critical ValUues fOr Ei....ooovuiimiiiiiaiiie e e et e e e
Critical Values fOr Li..c.oooiuiiiiiiiiiiiie et e e e e e e e
Percentage Points of Rosner’s RST Many Outlier Test Statistics R; and Ro.evevvveveveveveennn,
Percentage Points of Rosner’s RST Many Outlier Test Statistics R;, R, and Ryueeeeevuvnn....
Percentage Points of Rosner’s RST Many Outlier Test Statistics Ri, Ry, Rs;, and Ra............
Percentage Points of HAWKINS' Ek ..oc..veiiiiiiiiiiiitiiiiieie st oo eeee e eve e s e
SIGNIfiCAnce LeVElS FOr \/B1 ov.ovevevieoeeeee oo e
Significance LeVels fOr Ba.....ccccociiviriiriiiviiiteseriieie ettt eeee et e seee e e en e e ese e
Critical Values for 77 When Standard Deviation s, is Independent of Present Sample
Upper and Lower Limits for 19, Point of Distribution of

T [(x"j),ﬁ‘jl >] ........................................................................................

Percentage Points of HaWKINS B......covoiiiiiiiiie e e e
Standardization of Sodium Hydroxide Solutions as Determined by Plant Laboratories ......
Analysis of Variance for the Data of Table 3-16.............cc.ooviiiiiiiiiieirieee oo
Analysis of Variance Omitting Laboratories 10 and 12............cocoevoeeomeeeooeeeoeeeeeeee e,
Critical Values of 77. and 7,» When the Population Standard Deviation ¢ is Known.........
Star Plate MeasuUremrents, LIl . ...ooiuueuiieie et ee e ee e e e e e e e e e
Values of k in \/Z(x; — X)*/k to Obtain Unbiased Estimates of Normal Population o..........

Values of a; and a, Such That a,s” and a,s are Unbiased Estimates of the Normal Popula-
tion Standard DeVIatiOn........ciiveieieiie e ettt veeae e
Mean Values and Standard Deviations of the Sample Mean Deviation........cccoccoveevviveeenn.n..
Mean Values and Standard Deviations of the Sample Range w..........ooovevveieeeecneeeeeeaeennn,
Percentiles of the x” DiStriDULION ..........ocoiiiiieeieitieeeee e e eee oo e e eees e ee e,
Divisors for the Confidence Interval About Normal Population Variance of Minimum




DARCOM-P 706-103

LIST OF TABLES (cont’d)

Table
No. Title Page
4-7  Divisors for Neyman’s “Shortest” Unbiased Confidence Interval for Normal Population

VATIATICE .. v v avevtievee e e e e et et e e e eee e e e e ettt aeee e e sat et bt e ee e e e eas s e bnae e s e s e s en snsra b ane e 4-23
4-8  Percentiles of the F DIiStriDULION . .uueeuuint i e e 4-29
4-9  TIMPACE POIMIES 1otrrttrerieiiieiieiii ettt st e e e e e e e st e s e e e e e e e baeaeaeaeeeeesee esasesbsrasbe bbb e as srnn s sees 4-33
4-10 Exact Bartlett Critical ValUES ....eevveeiiieeiiitiiiii e ettt b e 4-35
4-11 Hartley’s Statistic; Percentage Points of the Ratio, §7,, /Soiy «reeeeesereserssesersssssesssesssnessnssnsenes 4-37
4-12  SAMPIE VATIANCES .eeriereiunieiereetiieeeeseititertenennete ces st b oot et e s sttt aae s e et e e ae s et s e sebe e e e eee s 4-39
4-13  Percentiles of the £ DIStrIDULION ...ceeuitiiisiiiiiiiit et e e e e e 4-42
4-14 Scott and Smith’s 1 Approximation — (95% Level) .....cccoeviiniiiiiiiiii 4-43
4-15 ODbSETVEd FUZE TIIMIES. ..o oottt ieeeiti e eeetee et e e eete bt e e eeeteae e s ot baaa s sossatsaaenaas aesseesnansans 4-48
4-16 Symbolic Matrix—Grades From N Raters for K Research Proposals.............................. 4-52
4-17 Analysis of Variance of Data From Table 4-16..........ccoociiiiiii 4-53
4-18 Scores for Six WOW Proposals by Five Raters..........cccoccccvviiii i, 4-55
4-19 Analysis of Variance of Scores for WOW Proposals..........ooooviiiivi 4-55
4-20 Confidence Levels for Mean Scores for Six Proposals............ccooii e, 4-55
5-1 Confidence Limits for the Expectation of a Poisson Variable.........coovvieiiiiiniiniiiiiiincnenn, 5-8
5-2  The General 2 X 2 Table ...t e et e 5-9
5-3  Exact P Values and Exact 95% Confidence Limits for Differences in Proportions in Per-

cent (100 A), Ratios of Proportions R, and Odds Ratios ¢ ............ccoeviiiiiii, 5-16
5-4 2 X 2 Contingency Tables: Test for Comparing Two Proportions ............cccceceveiviiiiinneeinns 5-21
5-5  PrOD@DIIITIES ..oieiieiiiieeee ettt et e e e e et e e ee e e eae e e e e e e e brtnh e e e e e e bae e eene e e s eeeeaen e e eeenee 5-31
5.6 Double Dichotomy Table ........ccoooiiiiiiiiiii e e 5-31
5-7  Seventy-Four Tosses of Five COINS......cccoiiiiiiiiiiiiiiii e 5-36
5-8  The General Two-Way Contingency Table ........ccocooiiiiiiii e, 5-38
5-9  Summary of Results of IPR QUEStIONNAITE. .......ceeeriiiieiiiiiiiiiie i 5-39
5-10 Results of MG Firing EXPEeriment .........ccoociiieiiiiiieere et ciiiiine et s s s 5-41
5-11 Two-Way Analysis of Information Table........ccccccviieiiirin i e 5-42
6-1  Gravimetric Determination of Calcium in the Presence of Magnesium..........c.cccceeoeeiiiens 6-6
6-2  Striking Velocities, Residual Velocities, and Residual Masses for 27-g Projectiles Fired

Against 0.5-1n. Armor PIAte . .....ooooiiiiiiin it e 6-16
6-3  Fuze Burning Times and Forward First Order Differences for Two Instruments.................. 6-25
6-4  Ballistic Limit vs Armor Thickness and Brinell Hardness...........cocooerii s 6-28
6-5 Rifle Barrel Length vs Average Muzzle VEIOCItY....cuueuuiimiiiiimieiiiii e e 6-31
6-6  Tables of Orthogonal Polynomials .........ccccoviiiiiiirierieie e et er e e e e et e e 6-37
6-7 Example of Orthogonal Polynomials............ocoooiiiiiiiiii e e e 6-43
6-8  EXAmple 6-4 COMPULATIONS 1ievtiriirirereieiiienretaueetaiet srets et se s e e e e e eeseeesaesaeeeenteeeeesaeeseeeaeennen 6-44
6-9  ANOVA Table for EXample 6-4 .....ooooiieiiiiiiiiiiiie ettt etetiite eeseeeeebat seeaaee rnaeeeeees 6-44
6A-1 Originally Measured Concentrations of Ozone in Number of Molecules per Cubic Cen-

timeter and Instrument Differences for the Three Kreuger Instruments (UV Absorption)

on Flights 249, 250, and 251 ..o oo e e e 6A-7
6A-2 Analysis of Difference in Biases Between Instruments 1 and 2 Versus Altitude..................... 6A-9
6A-3 ANOVA of Trends in Differences (Column 5, Table 6A-1) of Biases, Instrument 1 Minus

| 0] 8 g 00 1155 o1 A S ST UPTRTRIRRTPPP 6A-9
7-1  Moments of Exponential, Weibull, and Gamma Populations............cccceeeeviiniieiiiin e 7-11
7-2  Expected Values of Order Statistics From N(0,1) ... 7-12
7-3  The Coefficients of the Most Efficient Linear Systematic Statistics of the Mean and Stand-

ard Deviation in Censored Samples of Sizes =< 10 From a Normal Population................ 7-15

xi



DARCOM-P 706-103

Table
No.

7-4

7-6
7-7

7-8

7-9
7-10
8-1
8-2
8-3
9-1
9-2
9-3
9-4
9-5

9-7
9-8
10-1
11-1
11-2
11-3

Xii

LIST OF TABLES (cont'd)

Title
Values of m = r + s Such That We May Assert With Confidence at Least B That 100,
Percent of a Population Lies Between the rth Smallest and the sth Largest of a Random
Sample of n From That Population (Continuous Distribution Function Assumed)..........
Confidence 8 With Which We May Assert That 100 v Percent of the Population Lies
Between the sth Largest and rth Smallest of a Random Sample of n From That Popu-
lation (Continuous Distribution Assumed)...............o.ocooveereveeoioio
Toleraace Factors for Normal Distributions...............o..o..ocooeoveeeoe
Means and Standard Deviations of the Ordered Radii in a Sample of n From a Circular
Normal Distribution ............cooviiiiiiiiiiioie oo
Variances and Covariances of the Ordered Radii in a Sample of n From a Circular Normal
DISErIbULION c..ooi e
Computer Program for Truncated Bivariate Normal Target Firings............cocooooei
Blue Tanks With One or More Hits and Observed Frequency........cooooooooiiiiii
95% and 10% Probability Levels for the Poisson Distribution......................... e




DARCOM-P 706-103

PREFACE

The continuing demand for and growth of statistical analyses in Army experimentation and applications of
all kinds has resulted in a large number of special analytical techniques that are now widely used. The theory of
many of the statistical techniques of special interest has been investigated systematically during the last 40 yr
or so. Some of the statistical analyses of original Army interest have found their way into the broad statistical
literature and, recently, into some of the university curricula. Naturally, courses in statistics taught in the
universities form a strong basis for direct applications to many Army research and development efforts. Asis
widely recognized, the field of general statistics is indeed now an interdisciplinary science, affecting even our
daily lives, and it devolves quite naturally that some special statistical procedures and experimentation
guidelines would play a central role in a number of Army analytical endeavors. The need, therefore, to record
and illustrate many of the well-developed statistical techniques has led to the desirability of publishing a
number of engineering type handbooks on the subject of experimental statistics.

In 1962 and 1963, the US Army published five Engineering Handbooks (AMCP 706-110, -111,-112, -113,
and -114) on experimental statistics, which have found extensive use and also are widely referenced in both
Government and industrial activities. Our Chapter 1 gives the titles of these five volumes, along with an
introductory description of the present handbook. In the intervening 20 yr or more since the publication of the
AMCP 706-110 through 114 series of handbooks, much additional research in mathematical statistics has
been accomplished, and some unique applications to Army problems have been found to be highly useful.
Accordingly, a considerable amount of upgrading of the original material, along with some rather extensive
efforts to round out and record most of the recent statistical attainments, was necessary. It is for such reasons
that the present handbook has been developed.

We have endeavored to cover in considerable detail some of the topics in such fields of interest as precision
and accuracy of measurement procedures, outlier detection, least squares and regression, order statistics,
sample size determination and sensitivity analysis, while also including more or less supplementary coverage
of techniques that have been thoroughly investigated in theory and practice or recorded in reputable current
references. Topics were selected for the handbook to address the various inquires received over the past 30 yr
relative to statistical problems. Hopefully, we have attained some balance in this undertaking and provided a
useful compendium of some specially selected analytical procedures. It is realized that many statistical
techniques not fully covered herein will no doubt find their way into future Army practice; a specific cutoff
date for a handbook dictates the particular selection of topics that can be included. Nevertheless, the
techniques we have included should be of general use for many years to come. In fact, it is visualized that some
of our selected subjects will come into prominence not only in Army applications but also in industrial,
engineering, and research pursuits as well. In any event, it is hoped that we have provided a sound basis for
future applications and have indicated some areas for further research. It is believed that the reader will find
many references in this volume which should prove of value in his Army statistical endeavors.

The development of this book is almost wholly the work of Dr. Frank E. Grubbs, formerly Chief
Operations Research Analyst of the US Army Ballistic Research Laboratories. Dr. Grubbs was in fact
engaged in much of the Army’s statistical programs during the years 1941 to 1981. Indeed much of his research
in mathematical statistics, which has been found extensively applicable in Army and industrial problems, is
recorded in this handbook. We are much indebted to the US Army Materiel Systems Analysis Activity
(AMSAA) and the US Army Ballistic Research Laboratory (BRL) for providing support during the
preparation of this handbook.

The US Army DARCOM policy is to release these Engineering Design Handbooks in accordance with
DOD Directive 7230.7, 18 September 1973. Procedures for acquiring Handbooks follow:

a. All Department of Army (DA) activities that have a need for Handbooks should submit their request
on an official requisition form (DA Form 17, 17 January 1970) directly to:
Commander
Letterkenny Army Depot
ATTN: SDSLE-SAAD
Chambersburg, PA 17201.
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“Need to know” justification must accompany requests for classified Handbooks. DA activities will not
requisition Handbooks for further free distribution.

b. DOD, Navy, Air Force, Marine Corps, nonmilitary Government agencies, contractors, private
industry, individuals, and others—who are registered with the Defense Technical Information Center (DTIC)
and have a National Technical Information Service (NTIS) deposit account- may obtain Handbooks from:

Defense Technical Information Center
Cameron Station
Alexandna, VA 22314,
¢. Requestors, not part of DA nor registered with the DTIC, may purchase unclassified Handbooks
from:
National Technical Information Service
Department of Commerce
Springfield, VA 22161.
Comments and suggestions on this Handbook are welcome and should be addressed to-
Commander
US Army Materiel Development and Readiness Command
Alexandria, VA 22333.
(DA Form 2028, Recommended Changes to Publications, which is available through normal publication
channels, may be used for comments/suggestions.)
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CHAPTER 1
INTRODUCTION TO CONTENTS OF THE HANDBOOK

A brief but somewhat comprehensive and explanatory vievy of the topics and general subject matter of the
handbook is highlighted in this chapter.

1-1 INTRODUCTION

During the 1960’s a series of Engineering Design Handb.ooks on the general subject of experimental sta-
tistics was published by the US Army. These Engineerinng Design Handbooks have the following pam-
phlet numbers and titles:

AMCP 706- Title
110 Experimental Statistics, Section 1, Basic Concept:s and Analysis of Measurement Data
111 Experimental Statistics, Section 2, Analysis of Enumerative and Classificatory Data
112 Experimental Statistics, Section 3, Planning’ and Analysis of Comparative Experiment s
113 Experimental Statistics, Section 4, Special Topics

114 Experimental Statistics, Section 5, Tables.

This valuable set of handbooks on experimental statistics and related subjects has served the Army
analysts quite well as an authoritative reference of useful methodology and examples. In the intervening
years, however, the field of experimental statistics hias moved forward at a very rapid pace, and in fact,
many new and useful techniques in experimental statistics have become available. Our primary objectives
in the preparation of this handbook, therefore, have been to select some of the more useful statistical
techniques we believed Army analysts would require and to assemble them in a single, comprehensive vol-
ume. As would no doubt be expected, we were not able to devote the space to cover the multitude of
many other desirable statistical methods—for examjple, extensive multivariate distribution theory (or even
bivariate or trivariate weapon delivery error distributions), the estimation of (residual) dispersion from
mean square successive or higher order differenc:es, or nonparametric statistics to the extent desired.
Moreover, it seemed too early to cover the use and applications of “‘robust” statistical estimation
methods, even though some special interest has bieen evident in this area. Neverthele:ss, we consider that
the topics we have covered in this handbook will represent a valuable addition to the Experimental Statis-
tics series of handbooks—AMCP 706-110 through -114-—and will either provide thz analyst with useful
reference material or perhaps help him with the current methodology of some of the more up-to-date ad-
vances.

1-2  OVERVIEW OF THE HANDBOOK

We have presented the topics in this handbook in a certain order to draw proper attention to applica-
tion areas that are now considered mandatory for the successful, practicing experimental statistician. Thus
we have not approached the general subject o'f Army experimental statistics in what some might regard as
a logical order of elementary statistical concepts in a college- or university-type curriculum. In fact, we
have long observed that the more usual colle:ge statistical courses do not even approach the need to han-
dle or deal effectively with the formidable problems in practice—another reason for preparing this hand-
book. As a case in point, consider the problem of errors in measurement, precision, and accuracy of
measurement. It is certainly of considerable interest to know in much detail just how well. errors of mea-
surement are controlled; otherwise the observations taken in an experiment could lead to entirely wrong
conclusions and inferences. Hence perhaps t:he prime objective in experimental work is the assurance that
the measurements taken will be of proper quality. It is for this reason that we devote attention first in
Chapter 2 to the statistical treatment of errors of measurement, precision, and accuracy problems. We at-
tempt to define, provide methods of estimation, and illustrate by actual example these very elusive con-
cepts in Chapter 2. Moreover, coverage in Chapter 2 includes the known, key statistical tests of signifi-
cance, which are useful in comparing population parameters of the precision and accuiracy measures. In
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dealing with these problems of precision an d accuracy of measurement, it is necessary to discuss the hier-
archy of calibration echelons to the top, or the National Bureau of Standards, and the probable accumu-
lation of error through such channels. Finzlly, the use of interlaboratory studies of measurement pro-
cedures and test methods, or “round-robin” itests must be considered. Thus we have given an introduction
to these practices and procedures in Chapter 2 also. With suitable knowledge of the precision and ac-
curacy of our measurement procedures, we are ready to discuss the next logical topic in statistical prac-
tice, namely, the analysis and treatment of o utliers.

Chapter 3 gives an account of the statistical tests that are rather widely used in current applications to
identify and to isolate outlying observations i1 samples. The so-called ““outliers” that often appear in ex-
perimental work could be due to errors of measurement, recording errors, or just plain mistakes, but they
also could reflect the true characteristics of the population one is actually sampling. Thus the basic prob-
lem is to develop the more useful statistical tests that will lead almost unerringly to the separation of true
outliers from the actual characteristics of the population sampled, i.e., the physical environment. For a
systematic and comprehensive treatment of the outlier detection problem in Chapter 3, we give the more
efficient statistical procedures for isolating either a single high or single low anomalous observation, or
either the two highest or the two lowest sample values, and also some rules for judgment of the lowest and
the highest observations simultaneously. For small samples these particular cases are met very frequently
in many practical situations. We then proceed to discuss in some detail the detection of many outliers
(more than two) or, that is, the likelihood of much unacceptable heterogeneity in the sample of observa-
tions. Several multiple outlier detection procedures are given, and pertinent practical examples are illus-
trated. Since our interest lies in the realm of making sound conclusions and inferences based on the statis-
tical analysis, the methods of Chapters 2 and 3 be:xcome of fundamental importance in helping to assign
the likely causes of questionable variations.

Hence Chapters 2 and 3 have been placed first to call close attention to and also to provide the Army
statistical analyst with a solid background for handl'ing and assessing errors of measurement and the pos-
sible effect of outliers in important practical appliciations. We believe that this approach to modern day
statistical analyses. leads us with much assurance to the proper handling of the many special or selected
techniques discussed herein, which currently are required in many applied Army investigations.

There is a variety of special statistical topics, that have come to light over the years, and, as a matter of
fact, have been fouind to be of much particular interest to the practicing statistician. Moreover, it seemed
very highly desirable to bring these topics together in .a single chapter, which we have done in Chapter 4.
Such topics include:, for example, some elementary account of basic estimation techniques—particularly
approximate unbiased estimation of the population standard deviation for samples from a normal popu-
lation, the concepts of efficiency and mean square error, some updating of the common statistical tests of
significance, and some points on the choice of significanice levels for multiple tests. In recent years there
have been some adv ances in the development of approximate statistical procedures for some of the signifi-
cance tests, and for many or most practical applications :such techniques may just as well be used. In the
Student type ¢ tests for comparing normal population means, the use of (n — 3) instead of (n — 1) degrees
of freedom (df) as a. divisor of the sum of squares leads 0 a ¢ statistic that is very nearly normally dis-
tributed. Hence the table of standardized normal deviates- —instead of the usual ¢ table—may be used in
practice, and in fact, only a normal percentage point must be remembered! Moreover, this development
extends rather well to both the two-sample ¢ test and the Behrens-Fisher problem for comparing two
normal population means for which the variances are not eqqual. Clearly, such suitable, approximate tech-
niques could well promote wider practical applications because the rigorous handling of only the exact
tests has been intractable. Along with the common statistical tests of significance et al., there seemed to be
some value in recording the principles of establishing confide:nce bounds on the unknown normal popula-
tion sigma or standard deviation, including a discussion of Neyman’s shortest unbiased confidence
bounds. These topics are covered in Chapter 4.

Since the applied statistician often must compare the relative size of more than two normal population
sigmas, up-to-diate coverage of significance tests for the equality of several population variances must be
approached. Heince homoscedasticity tests, such as that of Bartlett, Cochran, Hartley, Cadwell, and Bart-
lett and Kendall, are highlighted in Chapter 4.
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The design and analysis of planned experiments using statistical experience now extend over such a
wide area that we cannot go into such developments and accomplishments in this handbook. Also many
excellent textbooks on the general subject are now widely available. Nevertheless, we considered it desir-
able to discuss a rather frequently appearing problem of comparing subjective type judgments in much
Army work. Our analysis of variance technique used here concerns the rating and ranking of research and
development proposals by a panel of “‘experts”; many similar applications could be made elsewhere. As
the final subject of Chapter 4, we discuss the choice of significance levels for multiple type tests. There are
often cases that involve a series of significance tests, and in the end one desires to guarantee a given or
prestated level of significance.

As would be expected, many Army statistical applications involve the comparison of two unknown bi-
nomial population parameters or some analyses of count or cross-classified categorical data. One of the
most frequent and classical problems concerns the analysis of 2 X 2 comparative trials, or two-way con-
tingency tables, especially the 2 X 2 table of count data. In Chapter 5 we have tried to give some of the
more relevant background concerning the analysis of 2 X 2 contingency tables by using the classical
normal approximations -and the chi-square analysis equivalent test. As has been recognized since the
1940’s, one has to consider both the possibilities of fixed and variable marginal totals with the classical
comparison of two binomial population parameters imbedded in such treatments. We follow the basic
work of Barnard and Pearson in this endeavor and attempt to give much assurance to the fact that the
normal approximation is normally quite satisfactory. Since there has been much confusion in the past
concerning both the interpretation and the statistical analysis of contingency tables, we have tried to de-
velop and present the material in an order and fashion the Army analyst can follow and remember. This
means that for the frequently used 2 X 2 table the comparison of two binomial population parameters or
proportions appears to be of some central importance. This case, therefore, is treated rather extensively,
and some Army type applications are given.

During the past 20 yr or so, there have been some developments toward “different”” approaches to the
analysis of contingency tables, including the information theory approach and the loglinear model.
Consequently, we have included some discussion of both of these approaches, even though somewhat
limited in scope, while adhering to the belief that analyses should treat the original, observed count data
without any transformation of scale. We must note, however, that the use of the loglinear model leads to
linearization of the data and hence likens this approach to the well-known analysis of variance (ANOVA)
of statistically designed experiments, such as two-way classifications or layouts of randomized blocks.

Due to the demand for statistical analyses arising from diverse applications, readers should be aware
that least squares, regression, and the fitting of functional relations represent some of the most important
topics to be covered in any handbook of this kind. Moreover, practical applications now require more
than just a “routine fit” as is sometimes presented in statistical textbooks. In fact, in line with the princi-
ples of Chapter 2, present-day analysts should have profound appreciation for the existence and size of er-
rors of measurement and whether or not the dependent variable is sufficiently “free of error” or otherwise
deserves some special treatment. Consequently, Chapter 6 has been'written with such problems in mind
for attacking least squares. Also for these reasons the very first problem or example illustrated is ap-
proached from the standpoint of whether the assumptions and the fitted linear model are valid. In this
way one can perform least squares in such a manner as to have great assurance and confidence for his
analytical judgments.

Although statisticians, using the fitted equation statistics, have long determined confidence intervals for
specific values, an important result of Henry Scheff¢ that covers multiple confidence statements about and
for the whole least squares line has too long been overlooked. Therefore, Scheffé's theory for the regres-
sion line and its practical benefits are stressed. Also the important result of Berkson, which points out
that when the experimenter presets and aims for ““controlled” values of the independent variable, the ordi-
nary least squares line involving 1 on x may be fitted in the normal manner as for v free of error. We go
to some effort in Chapter 6, therefore, to select and exhibit those regression topics that may be of most
importance in practice.

Although physical scientists have always faced the least squares case involving “‘errors’ in both vari-
ables, i.e., the dependent and the independent variables, it is only in recent years that the statistician has
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developed an appropriate treatment of this problem. Hence the “errors in both variables” case is dis-
cussed very thoroughly, and modern approaches for use are presented. Also we stress in Chapter 6 the
comparison between the fitting of an appropriate physical model on one hand and that of a polynomial on
the other. The value of the physical model is demonstrated by using a problem in penetration mechanics.

The fitting of a dependent variable on several independent variables is presented in a rather simple
computational manner. The use of orthogonal polynomials for equally spaced values of the abscissa is
stressed in connection with the analysis of variance (ANOVA) table, which uses a Snedecor-Fisher F test
for a stopping rule. A very unique example, applying Chapter 2 principles, is also given.

The need for analyses of the ordered observations in a sample, as contrasted to observations in the
order taken, has deserved much special attention in recent years. This is due to the fields of life testing

and reliability, where the lifetimes of articles occur naturally in increasing order and such tests may be

stopped before all articles fail; or the existence of outliers in samples; or some rounds fired at a target that
miss it, etc.; and for which unbiased estimation of population parameters is required. Indeed, the rather
incontrovertible results arising from estimation through the use of sample order statistics make their ap-
plications very attractive for their efficiency is surprisingly high. Thus Chapter 7 attempts to present an
introductory account of some of the principles involved in the analysis of sample order statistics for pur-
poses of inference. Our interest in order statistics concentrates on distributions of largest and smallest
values in the sample, the sample range or largest minus smallest values, the quasi-ranges, expected values
of the sample order statistics and their moments, efficient linear estimation of population parameters, the
statistics of extremes and Gumbel’s extreme value distribution, some relationships between order statistics
and outliers, the radial order statistics as applied to target analyses, the analysis of truncated samples
from firings at rectangular targets, and parameter estimation for truncated Poisson samples with missing
zero occurrences. The last-named application applies, for example, to the analysis of combat records
about tank engagements for which the number of misses is naturally never known but the number of
tanks having one hit, two hits, or more is identifiable.

In terms of order statistics, several distributions come into importance in applications. These include
the normal, the exponential, and the Weibull distributions. In Chapter 7 we illustrate the use of order sta-
tistic theory by a number of examples that illustrate the versatility of this analytical tool.

Perhaps the most ubiquitous requirement of a statistical character among physical scientists and others
concerns that of selecting the right sample size. In fact, the almost universal question is invariably, “What
sample size do I need?”. This question is certainly a very simple one but often like others requires some
qualification, to say the least! The determination of sample size is not only or strictly a statistical prob-
lem, but it may be a physical or engineering one as well or even an economical one since as so often one
“gets only what he pays for”. In some cases the sample size is limited by just what is actually available for
test, in which case the design of the test might well come into play. On the other hand, the statistical de-
termination of sample size represents an important activity because there must be some control of the
risks of erroneous judgments. That is to say, for example, that we would like to keep the “Type I” error
of rejecting a “good product” and the “Type II” error of accepting a ““bad product” both down to a mini-
mum. Perhaps it is easy to see then that the determination of sample size is very dependent on the vari-
ability of the population to be sampled, or, that is, the population standard deviation. If this sigma is
small, the sample size will ordinarily be smaller than if the sigma were large. Also the choice of sample
size will depend very much on just how close we desire to be near the population parameter—i.e., mean,
standard deviation, etc. Clearly, if we desire that the sample mean be the same as the population mean,
the sample size and the population size must be equal, or very nearly so. What we are also saying in effect
is that sample size determination will depend on the particular difference we would like to be able to de-
tect and the width of the confidence interval within which we would like the population parameter to lie.
Hence there are a number of ways of framing questions concerning sample size determination, and the ap-
proach must be selected with some care. Moreover, once the appropriate approach has been selected, the
sample size must not be so large as to be impracticable—a final requirement. )

It might be said that we more or less focus on two approaches having some practical value for the de-
termination of sample size. The first of these revolves around either establishing a difference of practical
importance or a deviation from the population parameter we would like to detect and then finding the

1-4




DARCOM-P 706-103

sample size for the significance test that will show statistical significance for the probability level also
selected. This particular approach is often used because it is not difficult for the practicing engineer or
physical scientist to formulate and to apply. The second, and perhaps more difficult, approach for the
practitioner is to formulate the problem in terms of just what is acceptable or desirable and what level of
quality, etc., is not, then to determine the risks one might be willing to take in these two judgments, and
finally to obtain the sample size that guarantees these attainments. In this way we are controlling the risks
of erroneous judgments. In Chapter 8 we discuss both approaches in an appropriately detailed manner for
the 'more common statistical tests of significance, and we illustrate the principles by a number of practical
examples.

The determination of sample size(s) is recorded for sampling a single binomial population or comparing
two binomial populations (or Poisson distributions); the testing for high reliability; the estimation and
comparison of normal population variances; the estimation and comparison of normal population means,
and the normal populations; contingency tables and curve fitting; and a brief account of sample sizes for
analysis of variance type problems. Every effort is made to keep the sample size equations as simple as
possible, and particular attention is given to the use of the normal approximations by showing their ac-
curacy. Thus the practicing statistician should find much use for Chapter 8.

Long before statistical techniques were applied in depth to industrial- and engineering-type problems,
there existed a need to use probabilistic methodology in bioassay problems or ‘‘dosage response”
analyses. This perhaps was especially the case since the data were of a “quantal response” type nature or
an “all or nothing” response. Thus the analyst appeared to be face-to-face with an application involving a
continuous scale, or ‘“‘variables’, treatment, but the response data were simply of an “attribute’ nature,
or “yes” or “no”’ character. For the Army the pressing need for-quantal response analyses came to the
forefront in connection with analyses' of armor penetration studies and the mammoth effort directed
toward acceptance testing of armor plate from many producers during World War II. The analytical
problem is clearly seen for defeat of armor studies since, in firing projectiles at armor of a given thickness,
there exists some “lower” striking velocity for which no penetrations of the plate occur, but as the striking
velocity is increased, there are 10%, 20%, . . ., 50%, . . ., 90%, . . ., and finally perhaps even 100% penetra-
tions at some “higher” velocity. Hence basically one must estimate a cumulative distribution curve, which
is most often unknown, for the case where the firing of a single round results in either a nonperforation or
a perforation. Moreover, it is starkly clear that firings near the levels of 0% or 100% perforations give lit-
tle or no useful information! Therefore, one must also adopt an efficient strategy for conducting armor
penetration tests if he is to obtain the characteristics of the ““zone of mixed results’. For industrial and en-
gineering applications, this particular type of statistical problem was most often branded as a “sensitivity
analysis” as contrasted to the specific bioassay procedure. Chapter 9 discusses some of the more up-to-
date methods for sensitivity analyses of quantal response type data.

Since the problem in experimental testing for sensitivity analyses is that of locating the zone of mixed
results and exploring it in a fashion to estimate parameters of the assumed or guessed-at distribution, the
strategy of conducting the test and the related statistical analysis must go hand-in-hand. Hence, if one has
to determine a low percentage point, say 1%, or a high percentage point, say 99%, then the strategy of
testing should be so aimed. On the other hand, if one is primarily interested in the median, or 50%,
probability level and some idea concerning the width or standard deviation of the zone of mixed results,
he should avoid the end points and simply assume that the distribution is normal. For the zone of mixed
results, the distributions covered in Chapter 10 include the normal, the logistic, and the Weibull models.
The discussion, therefore, involves a variety of distributional shapes. Testing strategies include the com-
plete rundown test, the “up and down” strategy of Dixon and Mood, the Langlie one-shot test strategy,
the Robbins-Monro stochastic approximation method, the one-shot transformed response test strategy
(OSTR), and more general transformed response strategies for extreme percentage points of the assumed
distributions. The primary technique for the estimation of population parameters is Fisher’s method of
maximum likelihood, and some discussion of the iterative procedures is given as required. Also a number

of very informative examples and computational aids add to the usefulness of Chapter 9 for Army appli-
cations.
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Chapter 10 has been selected and prepared with a special purpose in mind. Our objective is to outline a
rather difficult problem that can be used to indicate the contrast between the statistical approach to
model development as compared to that of the physical approach and just how they might support each
other. In fact, the statistician would often fare better by trying to fit the available physical models to the
data before attempting to improve their applicability statistically. As it turns out, the applied or consult-
ing statistician will be called upon to use his expertise in any number of diverse areas of emphasis, and it
is unlikely that he will have immediately at hand the detailed knowledge required in each and every field
or problem. Likewise, as so often happens, the physical scientist will not be sufficiently trained in statisti-
cal methodology; therefore, the best approach must be teamwork involving both viewpoints. Communica-
tion barriers have been disappearing in recent years, and proper coordination should no longer be a
stumbling block since the multidisciplinary approach represents a common practice in science, tech-
nology, and engineering. We believe that such practices will be a continuing necessity.

For purposes of a convincing illustration, we have chosen the so-called “limit velocity” or “critical
velocity” problem in penetration mechanics studies. The limit velocity of a target armor plate may be de-
fined as the greatest striking velocity for which the chance of penetration is zero in statistical terms, or in
physical terms it is the striking velocity for which the residual velocity is zero. Even though the reader
may be aware of some similarity between Chapter 10 and the statistical sensitivity analyses of Chapter 9,
there is a sharp and important difference that must be recognized. In fact, Chapter 9 is concerned with
only the statistical approach or analysis of quantile response data, whereas Chapter 10 involves measure-
ments on both a continuous and attributive scale along with the problem of determining a physical law
that will give the limit velocity in terms of the armor thickness and hardness, the projectile diameter, the
projectile mass, the striking velocity, the angle of striking obliquity, and other physical parameters. In
other words we take up the problem of describing the role of the statistician as a team member in the
activity of scientific model building or development. The requirement for coordinating the roles of the
statistician and the physical scientist is discussed and amplified.

The final chapter, Chapter 11, focuses on an introduction to some selected topics in multivariate statis-
tical analysis and theory since a number of key problems arise in connection with many Army applica-
tions of statistical methodology. For example, some weapons have circular patterns of shots, i.e., equal
sigmas in the different directions, and it becomes desirable to test for “circularity”. Statistical problems of
this nature may be handled by using Wilks’ likelihood ratio tests for determining the equality of
variances, the equality of covariances, and the equality of mean values also. Usually, one is dealing with a
single bivariate or multivariate sample for the problems of this type, and we give an illustration for the
M16 rifle in rapid fire to indicate the nature of the application.

Chapter 11 also includes bivariate and multivariate statistical theory for comparing the results of two
samples with each item of the sample having multiple characteristics. Here one often needs to compare
the true covariance matrices of two bivariate or multivariate normal populations and uses the Hotelling
generalized T2 statistic, or he needs to compare the corresponding true characteristic means of two hy-
pothesized multivariate normal populations, in which case the application of Hotelling’s multivariate Stu-
dentized ¢ statistic is required. Finally, a Hotelling generalized T'2 statistic can be used to test whether two
multivariate normal samples can be considered to originate from a single multivariate normal population.
These Hotelling T2 statistics are thoroughly illustrated with an example that compares a newly designed
and a standard artillery projectile.

Since many users of this handbook may have applications that will require the simultaneous use of sta-
tistical methods from several of the chapters, we have selected a comprehensive and rather extensive prob-
lem related to a study of the precision and accuracy of instrumentation for determining the stratospheric
ozone concentration in the atmosphere. This statistical analysis requires the application of the principles
of Chapter 2, which requires redundancy of instrumentation to estimate the imprecision of measurement
of each measuring device, and along with it the application of orthogonal least squares procedures
covered in Chapter 6 to model the trends in instrumental bias differences. As a result, one can develop
precision and accuracy statements for the capabilities of the instruments and hence settle any error of
measurement questions. This study is presented in the Appendix of Chapter 6.
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CHAPTER 2

ERRORS OF MEASUREMENT, PRECISION, ACCURACY AND THE STATISTICAL
COMPARISON OF MEASURING INSTRUMENTS

Precision and accuracy of measurement represent widely misunderstood terms or concepts with the
result that many controversies arise in science, technology, and industrial practice. We therefore attempt to
define and quantify errors of measurement, precision, and accuracy in accordance with the principles of
statistics that apply so aptly to these concepts. By means of a systematic approach to the problem, preci-
sion and accuracy (or imprecision and inaccuracy) are described in an analytical manner, and the statisti-
cal techniques of estimating these parameters are given. It is Sfound that at least two measuring instru-
ments, taking common or the same measurements, are required to provide the needed estimates and to
obtain some idea concerning the reliability of the estimates. Moreover, these principles are extended to any
number of measuring instruments or laboratories engaged in measurement operations.

Many pertinent statistical tests of significance concerning the precision and accuracy (large sample or
population) parameters are presented for the analyst, and procedures for establishing confidence bounds
on the unknown parameters of measurement are also covered in considerable detail. These results are
discussed especially for either two or three instruments, and indications of usage are given for any general
number of measuring instruments.

The practice of interlaboratory testing is covered in some analytical detail, and techniques for estimating
the components of variance (or the repeatability and reproducibility sigmas) are illustrated numerically.

Finally, we give an account of the hierarchy of calibration echelons or channels and present an analysis
of the accumulation of error in such procedures. Many practical examples are given to illustrate the
theory.

2-0 LIST OF SYMBOLS
A=ri — P
Ar=n g,lr? — (Zr)* = convenient notation for n times the sum of squares about the

sample mean. (Applies also to any other letter subscripts.)

a = optimum value determined by minimizing total costs of calibration laboratory
hierarchy

ao = constant or exponent (see Eq. 2-137)
a; = constant or exponent (see Eq. 2-138)
B= 2(riv — P) + (1 — P)Su/S]
bo= constant or coefficient (see Eq. 2-138)
by = constant or coefficient (see Eq. 2-138)
= riw — P+ (1 — P) [(S2/S?) + 28./SY
= ow1/0i = ox/0; = constant precision ratio at each and every calibration echelon i

D, = lower confidence limit (see Eq. 2-90)
Dy = upper confidence limit (see Eq. 2-91)
E= error committed at a laboratory
E( ) = expected value or large sample average of ( ), the quantity within parentheses
e = random error of measurement whose mean or expected value is zero
€= 3 e/n = sample average of the random e; for n items
e'= @{al error of measurement or instrumental error, including bias and random error
e’ = Z]e,’-/'n = sample average error of measurement for » items

i=
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e;= random error of measurement for ith item

e; = random error of measurement for the ith reading of the jth instrument, where j =1,
2, etc. ¢ is the ith random error of measurement for I, concerning the ith item. The
ey are assumed to be normally distributed with the zero mean and variance o).

F= 5 — S, for use in Shukla’s technique (see Eq. 2-86)
F,= observed value of F
F(n — 1, n — 1) = refers to Snedecor-Fisher F distribution with (n — 1) and (n — 1) degrees of freedom
G= S} — S, for use in Shukla’s technique (see Eq. 2-87)
gi= si + k’; for Shukla’s technique
H= 1] (587 — SL)/(n — 2) (see Eq. 2-88)
Ho= null hypothesis to be tested
H, = alternative hypothesis
hi= w + 6 + v,
;= jth measuring instrument: j = 1|, 2, . .
K= constant or factor for Thompson’s confidence bounds in Egs. 2-83 through 2-85 and
Table 2-6

K= [(S; — S5 — 4(S7 — 8) (S} — 84)]"* = convenient parameter in Eq. 2-32
k = constant or multiplier

il

= number of participating laboratories in an interlaboratory test
« = ratio of imprecisions Oc,/0c), €.g., in Eq. 2-68
4= factor or constant for a lower confidence bound of Hanumara and Thompson (see
Egs. 2-95 and 2-96)

= constant or factor for Thompson’s confidence bounds in Egs. 2-83 through 2-85 and
Table 2-6

m = number of calibration echelons

m;= number of laboratories at echelon i
N= total number of instruments, observations, runs

N(0,1)= denotes a random variable that is normally distributed with zero mean and unit
standard deviation or variance

n= number of measurements or sample size

n;= number of observations in jth column

P= ti./(fiw + n — 2)

pi= ritsi= B+ B+ 2x; + eii + e, = sum of readings of instruments I, and I, for ith
item

Qj= particular variance of residuals, defined in Eq. 2-141, which is equivalent to the
variance of errors of measurement of the jth instrument

q= u + (6 + v

= X = number of “runs” made with all instruments
RHS= Tight-hand side of

r=ut+te=u+pB+e

r= observed value of a measurement for the first instrument I,

ri= 0x/0. = precision ratio

ri= x; + B + e; = observed value (measurement) for the ith reading or measurement
with instrument [,

ri= ith measurement or reading of I,
r; = ith reading of the jth instrument
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U ~i =~ ~
aho S 2

2
Sxi-eA

2 J
Sx+e1

Sixe

S
See,

used to denote the element or cell value in the ith row and jth column of a two-way
classification in the analysis of variance table (see Eq. 2-140)

ax +Pixi + ex = observed value or readings on ith item for “run” k

= ith reading of the kth instrument
= number of “runs” made with instrument I,

¢© — 1 = total precision ratio
Sve/(SxSe) = sample correlation coefficient of the true values x and the errors of
measurement e (Applies also to any other different letter subscripts, e.g., ryy, Fu,
etc.)

= average of a row, i.e., averaged over the columns

f

grand average of the two-way analysis of variance table
sample mean of the readings of instrument j

average of a column, i.e., averaged over the rows
sample mean of the readings of instrument k

=[l/(n — D]Z (e — ¢) = sample variance of the errors of measurement
i=1

sample covariance of errors of measurement of I, and I,
sample variance of the differences in readings of instruments I, and I

special symbol (see Eq. 2-139) used to denote the residual variance when row and
column effects have been eliminated

= §3 = sample variance of the readings of instrument I

generally a sample covariance term for instrument readings of I; and I; (see Eq. 2-94)

= S,fﬂ?l = ’Z:), (ri —7)/(n — 1) = A, /[n(n — 1)] = sample variance for instrument I

based on (n — 1) degrees of freedom. (Applies also to any other letter subscripts,
e.g., Si, Si, S2 etc.)

= Sxic, x+e, = covariance of the readings of the first and second instruments I, and I,
= S(r—s5)=8= Sﬁl_ez = sample variance of difference in readings of instruments I,

and Iz

= sample variance of the sum of readings of instruments 1, and 15

sample variance of the sum of the three instrument readings for each item measured

= sample variance of the average of the three instrument readings for each item mea-

sured

= sample variance of instrument I, based on (n — 1) degrees of freedom

covariance of the readings of instruments I, and I

sample variance of the difference in readings of instruments I, and I,
sample variance of the difference in readings of instruments I, and I,
sample variagce of the difference in readings of instruments I and I,

= [1/(n — 1)] gl(x,- =) = sample variance of the true unknown values of the

characteristic or item measured

sample variance of readings of the jth instrument I

St = sample variance of the readings of the Ist instrument, for example
él(xi —X)(ei—e)/(n—1)= A,/ [7(n — 1)] = sample covariance of the true values

x and the errors of measurement e. (Applies also to any other letter subscripts, e.g.,
wvs Sxy, €tC.)

= covariance of true values and errors of measurement of I,

covariance of true values and errors of measurement of I,
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Smj, xve, — sample covariance of the sum of readings of instruments I; and I,
Smj., xre, = Sxve), xve, = S = 0f j = 1, k = 2, for example

s; = ith measurement or reading of I,

t, = observed value of ¢

;. = upper « significance level of Student’s 7, with & = 0.01, 0.05, etc., but < 0.5
1(n — 2, A= B) = Student’s ¢ statistic with (n — 2) degrees of freedom for testing hypothesis that
A=B
t(n — 2, ox/o.,) = Student’s ¢ for (n — 2) degrees of freedom and a hypothesized value of Ox/ Oc,.
(Applies also to other degrees of freedom and parameters.)
1(n—2, 0x/o., = 5) = Student’s / test based on (n — 2) degrees of freedom of the hypothesis that Ox/0e) =5
t; =ith measurement or reading of I;
{, = upper a probability level of Student’s ¢

u =r — s = difference in readings of instruments I; and I,

u = factor or constant for the upper confidence bound of Hanumara and Thompson
(see Eqgs. 2-95 and 2-96)

= mean of the difference in readings between instruments I, and I,

<

up =ri—si= Bi— B+ en — e;n = difference in readings of instruments I, and I, for ith

item
Var ( ) = o ) = population (large sample) variance of the quantity within parentheses
v = s — t = difference in readings of instruments I, and I;
Vi = 8i — i = B2 — B3+ ei» — e = difference in readings of instruments I, and I; for the ith
item

w = t — r = difference in readings of instruments I; and I,

wi = ti —ri = B3 — Bi + es — e;; = difference in readings of instruments I; and I, for ith
item

x = true unknown value of a random variable measured with error
n

X = 2 xi/n = sample average of the x; for n items
i=1
x; = true value of the ith item or characteristic measured
x;j = element or observation in the ith row and jth column of an experimental design

z = mean of the readings of instrument I; minus the mean of the readings of instruments
I, plus I;
a = probability of rejecting the null hypothesis when it is true

ax = constant in Jaech’s model (see Eq. 2-118)

B = true unknown bias or systematic error of a measurement

B = constant bias or systematic error of measurement for the jth instrument I;
Br = constant in Jaech’s model (see Eq. 2-118)

& = 1/k’, where k = o,/

d: = lower (I — a) confidence bound on &

dy = upper (I — a) confidence bound on &

0 = (oﬁ2 + o§3)/(03] + 032) = particular ratio of population imprecisions of measurement
for three instruments (see Eqs. 2-72 and 2-73)

A = Wilks’ likelihood ratio

A = likelihood ratio statistic used to test Hy

A, = o probability level of the likelihood ratio A

p = true unknown (population) value of an item or characteristic measured with error
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v = [aﬁ3 + (oﬁ1 + oﬁz)/‘4]/(oﬁ1 alx oﬁz) = parameter in the ¢ test as in Eq. 2-78
Peie, = population correlation coefficient of the errors of 1) and I,. (Applies also to any
other pair of letters, e.g., rs, xe, uv, etc.)

o( ) = population standard deviation of quantity in parentheses
o. = imprecision standard deviation used when 0c,=0c,=0e
o = population standard deviation of the errors of measurement
oy = large sample or population variance of errors of measurement for instrument I, 031

being that for 1, etc.

Oce, = PO 0e,= large sample or population covariance of the errors of measurement of I,
and I, if it is nonzero

estaf,] = estimate of the population variance of the errors of measurement for instrument I,
estof,2 = estimate of the population variance of the errors of measurement for instrument I,
estoﬁ3 = estimate of the population variance of the errors of measurement for instrument I,

0., = standard deviation of error of calibration at the ith echelon in the hierarchy of
calibrations (used in par. 2-11)

o, = standard deviation among true laboratory means or levels, or external sigma

Om+1/Om = 0Ox/0m = precision or “accuracy” ratio in a calibration hierarchy at the last or mth
stage

or, = reproducibility sigma = Voi + o7/n for n observations at a laboratory
repeatability sigma or standard deviation within laboratories
population standard deviation of the true product variability

Il

ar

Ox

ox = large sample or population covariance of x and e. Indeed, o, is the population
covariance of the errors of measurement with the level of true values measured and
could be estimated by S, if isolable.

0x/0. = product-measurement precision ratio, often misnamed the “accuracy ratio”
estor = 6; = estimate of the unknown population variance o
xX( ) = chi-square statistic of ( ). the number of degrees of freedom

A

= estimate of quantity under the *

2-1 PRELIMINARY BACKGROUND STATEMENT

A very important and yet widely misunderstood concept or problem in science and technology is that of
the precision and accuracy of measurement. It therefore becomes necessary to define errors of measure-
ment and the terms precision and accuracy (or imprecision and inaccuracy) very clearly and then express
them in an analytical way. Also we need to present efficient methods of estimating precision and accuracy
numerically, and we need to establish or develop appropriate statistical tests of significance for the mea-
sures, especially since a relatively small number of measurements usually will be made or taken in most
experimental investigations.

In this chapter we will attempt to approach this important problem in a systematic manner and refer-
ence some of the key pertinent literature on the subject. In particular, we will (1) give an account of the
procedures for estimating the variances in errors of measurement, or the “imprecisions” of measurement,
showing that at least two instruments are needed to estimate instrumental imprecisions, and (2) proceed to
present techniques for comparing precision of measurement as well as making some useful statements
about accuracy and what might be done about it. We believe that most readers will acquire competence in
applying the needed techniques if we present illustrative examples as necessary; accordingly, this will be
our approach.

The subject matter of this chapter is covered first in the handbook because the statistician analyzes
observational data, and the capability of the measurement process should be assessed beforehand.
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2-2 INTRODUCTION AND CONCEPT FORMULATION

Each and every measurement or observation can be considered to consist of two “inseparable” compo-
nents: one is the true value of the item or characteristic being measured, and the other is an error of
measurement (instrumental error). The error of measurement of a quantity is widely known as the differ-
ence between the observed measurement and the true value of the magnitude of this quantity. The error of
measurement is taken to be positive or negative accordingly as the measurement is more or less than the
true value. We say “inseparable” because for a single measurement, or a series of measurements from a
single measuring instrument, it is not possible to distinguish exactly the size of the true value(s) of the
item(s) gaged and the associated error(s) of measurement that is (are) certain to be made. However, as
simply as we have stated this premise, we readily encounter some rather important problems or concepts
that require clearing up in our description of the two components of the (total) measurement as defined
here. First, there is the “true” value of the item or characteristic, which is part of the measurement taken;
the “true” value is of primary interest to the user. This “true” value is something that is rarely attained,
except perhaps accidentally, for it deals with the concept of “absolute accuracy”, so to speak, and may
involve many, many measurements or observations to average out the errors committed in the measuring
process.

Measurements are an essential part of our daily life, and it is through them that we communicate and
make progress in specifying just what is desired, needed, or will be accepted. Thus there must be some
basic agreements on just how “accurate” or “true” values will be obtained or sought out, whether they
relate to weight or mass, length, time, area, volume, or whatever characteristic is of interest. In any event,
the true or “absolute” values of measured items must be made relative to agreed upon standards and
methods of measurement. The method of measurement selected should consist of a set of instructions
specifying the apparatus and auxiliary equipment to be used to take the observations, the operations to be
performed, the sequence in which they are to be carried out, and the conditions under which they are to
be respectively taken (Ref. 1, pp. 21-165). Indeed, this is why we have a National Bureau of Standards,
which must establish approved methods for measuring and even rule authoritatively on measurements,
especially in the event of disagreements. Moreover, and as we shall see, the “perfectly acceptable” mea-
surements will also have to be “precise”. But this brings up another important term—accuracy. In this
very limited account we have immediately run into two, so far vague, terms that need clarification;
namely, “precision” and “accuracy”. Accordingly, we must define them, perhaps best in analytical terms,
as we proceed and indicate just how they may be quantified and estimated. We return briefly to the
concept of true value before proceeding further.

If there were no errors of measurement committed, we would determine the true value of the item being
measured each time a measurement is taken. However, in the presence of errors of measurement, which is
practically always the case, we have to hypothesize and deal with the more practical situation as described
previously. Therefore, it might be helpful if we now consider the concept of a “limiting value”. If repeated
measurements of a quantity or characteristic are taken and each time the mean of them is calculated, we
find that as the number of measurements increases without bound, our calculated means will approach a
limiting value. Hence if we were to continue taking such measurements indefinitely and calculating the
average of them, we would eventually arrive at a mean value, to some specified or preset number of
decimal places, which would not change. The “ultimate” mean value, attained as the number of measure-
ments increases beyond bounds, may be referred to as a limiting value. Unfortunately, this limiting value
may not equal exactly the true value of the item measured because on the average there may be some
“bias” in the instrument used for measuring or, put otherwise, our measuring instrument has a “systematic
error” since the mean of the readings does not approach the true (yet most often unknown) value. Some
further quantification of these statements is necessary.

Let us fix the ideas just expressed a little more concretely through the use of a simple, yet appropriate,
analytical model. Thus we might well express a single measurement taken with an instrument as

r=u+e (2:1)
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where
r = value of the measurement or the observation itself
4 = true but unknown value of the item measured
e’ = error of measurement or the instrumental error.

As an example, one might find that the observed or measured muzzle velocity (MV) of a round fired
from a gun or cannon is 659.5 m/s. However, he does not know the true MV u of the projectile nor does
he know the size of the error of measurement e’ because only the sum of the two components is observed.

As some further introduction, note that in Eq. 2-1 we have used the Greek letter u for the true unknown
or “population” value and the letter ¢’ as the random error of measurement. Had the true value been a
random variable, we would have specified it by using the letter x, for example, in the place of u. The
measurement then would have been given as

r=x+e’ (2-2)
where
x = true but unknown random value measured with error.

There is no evidence of any bias or systematic error in either Eq. 2-1 or 2-2 unless the average of a series
of measurements is such that the average error of measurement e

n
e = 3 eiln, (2-3)
i=1
where
n = number of measurements or sample size,
does not approach zero as the number of measurements increases without limit. (The limiting value of the
average error would not approach zero.) Thus the large sample average of the errors, or the limiting value,
must approach some quantity 8 # 0 for there to be a bias or systematic error of size 8. In this case, we
may as well hypothesize that generally the observed measurement should be described as

r=p+B+e (2-4)

where
B = instrumental bias or systematic error
e = random error of measurement whose mean or expected value is zero

and the true mean u (or x) has not changed. We now perceive that for an appropriate general formulation
of the measurement problem, we need to hypothesize that any measured value or observation may consist
of three inseparable components—first, the true value desired; second, an instrumental bias; and third, a
random error of measurement. The total error of measurement consists of the bias error plus the random
measurement error, i.e., the sum (B8 + ¢).

Perhaps the bias 8 may not normally vary during a series of measurements although by definition we
do expect the accidental errors e to be randomly distributed and average out to zero. It is the variation in
e that will be used to define and describe the precision—or the imprecision—of measurement, and the
total error (B + ¢) committed will be used to define and describe the accuracy of measurement.

With even this brief formulation of principles, it may be easy for the reader to understand why there is
so much confusion about the terms precision and accuracy. The problem becomes very involved because
the three components—u, B8, and e—are confounded or inseparable. Indeed, this alone is enough to
substantiate that even very intelligent discussions on precision and accuracy may be difficult or somewhat
incomprehensible; therefore, we need to proceed cautiously. We will accomplish this by discussing, in
appropriate detail, the case of measurements with a single instrument so that our concepts and ideas will
be further illuminated. Also we urge the interested reader to study the compendium of papers in Ref. 1 for
further background and to read the references and bibliography for further enlightenment.
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2-3 MEASUREMENTS WITH A SINGLE INSTRUMENT*

As discussed in par. 2-2, if we were to measure repeatedly the same item or characteristic, the average of
a large number of instrumental readings would, according to the model of Eq. 2-4, approach the true
value u plus the inseparable bias B of the measuring instrument if it exists since, under the assumptions
used, the average of the errors e would be zero. Hence if this were the applicable model, then for a
perfectly calibrated measuring instrument we would not have any great problem with imprecision of
measurement for a large number of instrument readings—for example, the determination of the single
value of a fundamental physical constant, such as the velocity of light. On the other hand, we must
perceive also of the prevalent case, or hypothesize, that the true values may vary from one measurement
to another in either a systematic or a random manner. Therefore, a somewhat more appropriate model is
of the form x + B + e, where both x and e are variables, and only the quantity 8 may be constant over
some series of measurements. As an example, consider the series of powder train fuze burning times listed
in Table 2-1. These 30 individual burning times are fairly random and illustrate the points we bring out.

TABLE 2-1
BURNING TIMES OF 30 POWDER TRAIN FUZES, s

10.10 9.62 9.50
9.98 10.24 9.56
9.89 9.84 9.54
9.79 9.62 9.89
9.67 9.60 9.53
9.89 9.74 9.52
9.82 10.32 9.44
9.59 9.86 9.67
9.76 10.01 9.77
9.93 9.65 9.86

The average 7 of these n = 30 sample values or observations is

n
= _er,-/n (2-5)
=
30
= 2;, 1ri/'30 =9,7733s
where
r; = ith reading or measurement.
Under the hypothesis that
rn=xi+B8+e (2-6)
where
x; = true value of ith fuze burning time
B = constant instrumental bias if it exists
e; = random error of measurement for the ith reading
we see that
r= (l/n),Elx,- + B+ (1/n) _Zlei =x+B8+e=09.7733s (2-7)
1= i=

*For our purposes, the terms instrument and measurement process may be used interchangeably here.
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X = Xx;/n = sample average of the x; for n measurenaents
e = e;/n = sample average of the ¢; for n measuremient error.s.

However, there is absolutely no way to break down the average oi” 9.7733 s into the three inseparable
components of true average fuze burning time X, the instrumental bi.as B8, and the average error of mea-
surement e. Thus we are “stuck”, as it were, with measurements froim a single instrument although we
could and should have had our measuring instrument, in this case an ¢ lectrical clock, calibrated properly
before the burning times were taken.

Let us next calculate the sample variance of the 30 fuze times based or1 (n — 1) = 29 degrees of freedom
(df). In this connection we define

&2 2
Ay = ng ri—(Zry) (2-8)
and see that the sample variance S; for the data of Table 2-1 is

= 3 (=7 (1 — 1) = Ay/ln(n — D] = 0.04714 (2-9)

and the sample standard deviation is S, = 0.2171 s.
If Eq. 2-6 is substituted into Eq. 2-9, we have symbo lically

S?= 82+ 2S,, + S? (2-10)

where

2 _ 1 & =2
Sy = 2oyl —152)) (2-11)
73 < [0 =
= sample variance of the truie fuze times
1

= ___ _Z:l(e,- —%)? (2-12)
= sample variance of the err ors of measurement
| n
Sye = Z (Xf - }) (ei _E) (2'13)
n— 1/=!

= . sample covariance of the triuie values and the errors of measureme nt.

Nevertheless, there is no way to decompose properly the variance SZ = 0.04714 into the product true
Varlablllty or sample variance S of true fuze times, the variance in errors of measurement or “limpreci-
sion” SZ and the covariance between fuze times and err ors of measurement Sx. since they are: confounded.
The reader may observe, however, that S2, or its square root Sy, is a measure of the true vari ability in fuze
times; S2, or S, is a measure of the dispersion in errors of measurement for the electric clock and the

person who operated it, and S, is a measurement of the “dependence” between the true fuze times and the
errors of measurement.

The sample correlation coefficient r,, between true fuze times and errors of measurernent would be

given by
= Sxe/ (SxSe) (2-14)
if it could be calculated!

Summarizing, we find that the average x of the true values, the bias or systematic error B, and the
average e of the random errors of measurement are confouinded as are the individual values as shown in
Eq. 2-6. Also we see that, with proper calibration of the instrument against an authoritative (standard, we
might be able to reduce the bias of the instrument to near zero or even to zero. Moreover, it can be. seen
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from Eq. 2-7 that once the bias is elimina ted, and' for a large number of measurements and the assumption
that the errors of measurement e; are rasndomly distributed with zero mean, it is clearly possible to obtain
accurately the average X of the true va'lues. In acldition, if we are concerned with the determination of a
single true value u, for example, the ve:locity of light, then from Eq. 2-4 we may approach that value quite
closely for an ever increasing number- of measure:ments with a properly calibrated instrument that would
not have a systematic error or bias. {30 much for average values, we must now turn to descriptions of the
dispersion or variation in errors of mrieasurement ard of the true values themselves.

Taking a close look at the variarice S7 of the obsservations or the measurements as in Eq. 2-10, we see
that it also consists of three confou.nded components. The first or S5 is an efficient measure of the product
variability or the variation in the true values of the: items measured. Hence Siis the “product variance”,
and the square root of it S, is the standard deviation of the product variability—obviously, a very impor-
tant component of interest to estimate. Further, the quantity S?is the sample variance of the errors of
measurement and is an excellent representation of the “precision” or the “imprecision” of measurement.
Thus if S?is small, the measuremients are considered to be precise; if it is large, the measurements are
imprecise. Therefore, we will usse this variance S? of the errors of measurement, or the square root of it S,
which is the standard error o measurement, to describe the imprecision of measurement. Moreover, the
reader may see rather easily that the size of S. relative: to that of S, would be of considerable importance in
the efficiency of most measurement analyses. One notes, incidentally, that if S. were near zero, or perhaps
actually equal to zero, the measurements would be very precise indeed, and, to assure accuracy, he would
only have to be concerned with the bias of the instrument—generally, a rather desirable situation. (The
reader should note that f.he constant bias or systematic error 8 does not appear at all in the calculation of
any of the variances, ie., Egs. 2-9 through 2-12, since it “cancels out” in the differences of the
calculations.)

Finally, the samp'le covariance term or Sy gives a measure of the “dependence” or “correlation”
between the sizes of. the true values x; and the errors of measurement e; if they happen to be so related. In
spite of the well-k.nown fact that large measuremenits often tend to have large errors of measurement,
there exist a larg,e number of situations for which no such correlation or dependence is present, and we
may indeed hyp othesize that S, tends to zero—a very plausible assumption for many applications.

The large sa.mple or “expected” value of S. will ap'proach the true unknown or population value of the
standard erro,r of measurement, and we will refer to this limiting value as o.. Similarly, the large sample or
expected va'iue of S, will tend toward the true product variability, which we will designate as ox—another
“populatio’a” value, so to speak. We see, therefore, that in approaching the problem of precision and
acturacy properly we will need to separate out the. sample quantity S. as the measure of precision (or
imprecision), which in turn is an estimator of o.. In @ like manner, we will need to determine and use Sx as
the estimate of true product variability o,. We observe that the concept of precision of measurement is not
so difficult to vinderstand because an estimate of the: standard error of measurement o. gives a quantified
value that can be used to describe precision or im precision. On the other hand, the proper concept of
accuracy is much more difficult to grasp with profound appreciation because it involves both the instru-
mental bias 8 a nd the random error of measurement e. An accurate measurement is obtained only when
the sum (B + ¢) is small, and this is complicated by the fact that the random error of measurement e as
described may ‘vary “too much” and perhaps “hide” the bias B. Indeed, to determine the size of the
instrumental bias 8 or to calibrate an instrument properly, the precision of measurement should be
“good”, i.e., g,, should be suitably small, or the average of a large number of measurements must be
obtained so thiat oe/\/;is small. We also see that (1) precise measurements may not be accurate because
_of the possibl: existence of too large a bias and (2) an unbiased measurement may not be very accurate,
except accideratally, if the precision of measurement is poor, i.e., o. is large. The best approach to guaran-
tee the accur:acy of measurement, therefore, se:ems to be that of attaining sufficiently good precision and
then determi ning the bias and correcting for it, or eliminating the bias through proper calibration. Unfor-
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tunately, the bias may vary from one occasion to another, so an additional component of variance or
instrumental error may have to be considered and assessed. It may be found that different instruments will
have different systematic errors or biases; the same may be true of the different laboratories performing
measurements. Different systematic errors or biases between instruments or laboratories will introduce
some additional components of variability, which need quantification in many applications.

We see from the discussion that the separation of product variability and the standard error of mea-
surement, or imprecision, cannot be accomplished with a single measuring instrument. It is for this reason
that we must examine the cases in which two or more measuring instruments are used to take the same
(series of) measurements or to measure simultaneously the same series of characteristics or items of
interest.

2-4 THE SEPARATION OF PRODUCT VARIABILITY AND IMPRECISION OF
MEASUREMENT WITH TWO INSTRUMENTS

2-4.1 BASIC OUTLINE AND APPROACH

We will now consider the case for which two instruments, I; and I,, are used to take simultaneous or the
same measurements on a series of n items or characteristics that exhibit product variability. Our aim is to
find a means of separating the product variability Sy from the imprecision of measurement S, i.e., the
standard error of measurement. Thus in this case the observed values or the measurements may be repre-
sented symbolically as follows:

Measurements by I, Measurements by I,

Vi
r, — X1+,81+€11
r, = x2+,81+e21

ri= Xi+ﬂ1‘|‘€i1

rm= x,+ B1+en

Si
ST — x1+Bz+€12

S) = X2+,32+€22

si= xit Biten

Sn= Xnt B2t en

where
r; = ith measurement of the first instrument I,
si = ith measurement of the second instrument I,
x; = true (unknown) value of ith item
B: = bias or systematic error committed by I,
B2 = bias or systematic error committed by I,
ei1 = random error of measurement of I, on the ith item
ei; = random error of measurement of I, on the ith item.
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Note that the difference in readings of I; and I for the ith item is
ri—si=pi— Bates—en (2-16)

and does not include the true value x; at all.
With reference to these definitive formulations, the sample mean or average value for the measurements
of instrument I; is from Table 2-1 (the first column in Table 2-2 is a repeat of Table 2-1).

T=x+ ,31 +?1
= 90.7733 s (2-17)
and that of instrument 1, is
s=Xx ‘|‘ Bz +Ez
=9.7414 s (2-18)

using the 29 observations—since one was lost—of the second column of Table 2-2. The difference between
the mean measurements of I, and I, is therefore

r—=s=B1— Bte —e (2-19)

and, under the assumption that the random errors have zero means or expected values, Eq. 2-19 gives a
more precise estimate of the difference in biases 8, and 8, than Eq. 2-16.

Continuing, we see from the definitions of variances and covariances and from Eq. 2-15 that we may
calculate three variances and one covariance for the two instruments 1, and I, and have symbolically that

Si= Si+ 28k, + 57, (2-20)
Si= Si+ 28k, + 52, (2-21)
Srs = 87+ Seey T Seey T+ See, (2-22)
SEmE= ISEN—— ISt~ IS (2-23)

where
Sxe, = covariance of true values and errors of measurement of I,
Sxe, covariance of true values and errors of measurement of [,
S.,e, = sample covariance of errors of measurement of I, and I,
S? = sample variance of instrument I, based on (n — 1) df
Sys = covariance of the readings of the first and second instruments 1, and I,
S?_, = sample variance of the difference in readings of instruments I, and I..

However, concerning the four equations or calculations, Eqs. 2-20 through 2-23, we may add Egs. 2-20
and 2-21 and then subtract Eq. 2-22 twice; the result is identically equal to Eq. 2-23. Hence the four
equations are linearly dependent. Consequently, for the two-instrument case we really have only three
useful equations but six unknown “inseparable” components to estimate. Qur primary interest centers
around the estimation of product variability and the imprecisions of measurement of the two instruments
—i.e., 8%, S%,, and S2,. Hence by assuming that the true values measured and the instrumental errors are
mutually or statistically independent of each other, the expected values of the three covariances will
vanish, or approach zero, thereby rendering a feasible solution. In fact, as pointed out by Grubbs (Ref. 2),
the covariance S, between the two instrument readings will then approach the product variance, so that
for purposes of estimation we have
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= (Shs— 575)/4 (Ref. 2).

Furthermore, from Ref. 2

estos, = S7— Sis (2-25)
= (87— Si+ 819)/2
= estol, = S; — Sis (2-26)
= (S:— 87+ 8%9)/2
where

S, = sample variance of the sum of readings of instruments I; and I,
estol = estimate of unknown population variance o;
esta?l = estimate of population variance of the errors of measurement for instrument I,
esta,f2 = estimate of population variance of the errors of measurement for instrument L.

The sample or estimated product variance and the variances in errors of measurement of the two
instruments are expected to be positive although we see from Eqgs. 2-25 and 2-26 that this requires S, to
be smaller than S?and SZ. Often this is not the case as we will see even for respectable sample sizes.

It is also of some interest to note that if the product variance is zero, i.e., SZand of = 0, or the same
item is measured » times by I, and I,, one might expect that Sk and Sx., would vanish. Thus he would
have to contend only with the estimation of o, oc,, and o.c,, the covariance of errors of I and I, if it
exists. In this connection, moreover, a solution using Eqs. 2-20, 2-21, and either 2-22 or 2-23 is clearly
obtainable to estimate Oe,s Oc,, aNd Oc e,.

If there were no errors of measurement, then it is seen that S7, SZ, and Sy all give the correct estimate
of product variance o7,

Example 2-1:

We will illustrate the estimation of product variability and imprecision of measurement for the case of
two instruments by referring to the data of Table 2-2. The data given there refer to an old, widely analyzed
example that appeared in 1948. Nevertheless, it is very useful for our exposition of the applications and
problems encountered in the area of estimation of precision of measurement. In Table 2-2 the individual
burning times of powder train fuzes are listed as measured by each of three observers on 30 rounds of
artillery ammunition fired from a gun. The fuzes were all set for a burning time of 10 s. The “burning
time” was defined as the elapsed interval of time from the instant the projectile departed the gun muzzle to
the instant of fuze functioning as noted by the flash of the detonating high explosive (at night). The times
listed were measured by three electric clocks, each of which was started by a gun muzzle switch, and each
clock was stopped independently by an observer as he noticed the flash. We have chosen this particular
example because it represents a respectable sample size; nevertheless, it presents some problems relative to
the often discouraging occurrence of negative estimates of variance or dispersion, at least for two instru-
ments. For a two-instrument example we will use the measured values r and s of instruments I, and I, the
first two columns, and the differences (4th column). We calculate

S?=0.04714023 based on all 30 readings of I,
S? = 0.04675448 based on 29 readings of I,, excluding 10.01, for which I, lost the round

S:=10.045112315 for n = 29 by Eq. 2-12, S,s = 0.045581897 for n = 29 by Eq. 2-13.
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TABLE 2-2

FUZE BURNING TIMES AND DIFFERENCES IN SECONDS

Observer I, Observer I, Observer I3 Differences

r s t r—s s—1 r—1
10.10 10.07 10.07 0.03 0.00 0.03
9.98 9.90 9.90 0.08 0.00 0.08
9.89 9.85 9.86 0.04 —0.01 0.03
9.79 9.71 9.70 0.08 0.01 0.09
9.67 9.65 9.65 0.02 0.00 0.02
9.89 9.83 9.83 0.06 0.00 0.06
9.82 9.75 9.79 0.07 —0.04 0.03
9.59 9.56 9.59 0.03 —0.03 0.00
9.76 9.68 9.72 0.08 —0.04 0.04
9.93 9.89 9.92 0.04 —0.03 0.01
9.62 9.61 9.64 0.01 —0.03 —0.02
10.24 10.23 10.24 0.01 —0.01 0.00
9.84 9.83 9.86 0.01 —0.03 —0.02
9.62 9.58 9.63 0.04 —0.05 —0.01
9.60 9.60 9.65 0.00 —0.05 —0.05
9.74 9.73 9.74 0.01 —0.01 0.00
10.32 10.32 10.34 0.00 —0.02 —0.02
9.86 9.86 9.86 0.00 0.00 0.00
10.01 lost 10.03 - = —0.02
9.65 9.64 9.65 0.01 —0.01 0.00
9.50 9.49 9.50 0.01 —0.01 0.00
9.56 9.56 9.55 0.00 0.01 0.01
9.54 9.53 9.54 0.01 —0.01 0.00
9.89 9.89 9.88 0.00 0.01 0.01
9.53 9.52 9.51 0.01 0.01 0.02
9.52 9.52 9.53 0.00 —0.01 —0.01
9.44 9.43 9.45 0.01 —0.02 —0.01
9.67 9.67 9.67 0.00 0.00 0.00
9.77 9.76 9.78 0.01 —0.02 —0.01
9.86 9.84 9.86 0.02 —0.02 0.00

Consequently, we estimate

Thus even for this large a sample for the two-instrument case, we get a negative variance; therefore, we
must take o., = 0. Negative variances may occur because of random sampling fluctuations (or small
sample size, which hardly seems plausible here) or because of a violation of the assumptions, such as the
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estoz = S, = 0.04558

estox = 0.2135s

2
estogl = Sr . Srs

= 0.001558

estoe, = 0.03947 (n = 30)

esto., = 0.03424 (n = 29)

2 __ o2
eStOez - Ss . Srs

= —0.0004696 < 0, a slightly negative variance.
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existence of correlations, or perhaps one or more “outliers”. (We cover the analysis of outliers in Chapter
3.) Referring to the data of Table 2-2 and especially the columns of differences, we see that I, generally
lags I, (4th column) except toward the latter rounds and that I, is somewhat “ragged”. In fact, the mean
value of the differences in the fourth column is 0.02379, and the standard error of these differences is
0.02651, as we will see later. Approximate 95% confidence limits on an individual difference may be
estimated from 0.02379 £ 1.96 (0.02651), which gives an interval from about —0.03 to 0.08, so that there
are three values (of 0.08) on the upper limit that give the suspicion of poor or ragged times or a lack of
good control for ;.

2-4.2 TREATMENT OF NEGATIVE OBSERVED VARIANCES

There has been much study of the problem of negative estimates of components of variance. This work
is beyond the scope of this handbook, and it seems unnecessary to delve into the subject extensively here.
However, it is of some interest to point out that Thompson (Ref. 3), working with a method of modified
maximum likelihood estimation, has suggested treating negative variance estimates in accordance with the
rules given in Table 2-3.

TABLE 2-3

NONNEGATIVE VARIANCE ESTIMATES
THE TWO-INSTRUMENT CASE (Ref. 3)*

If Take esto? = Take e:sta,f1 = Take estoﬁ2 =
87> S S8 S5 = 54 S o
$1>8,>0

$7> 8> 8! 3 ST+ 8:—28, 0

$I> 85> 8] S; 0 Si+ 82— 28,
5, <0 0 s; 5%

Reprinted with permission. Copyright © by American Statistical Association.

For our application, therefore, we would, according to Thompson (Ref. 3), take
estor = St=0.04511 (the smallest variance)
esto;, = S7+ Si— 28, =0.001089  (n = 30)
esto,f2 = 0.

This decreases estoe, from 0.03947 to 0.03299, whereas esto, changes from 0.2135 to 0.2124, and estoe, has
to be taken as zero anyway.

In addition to Thompson’s modified ML method of treatment and the possibility that small sample size
or the existence of outliers might cause negative estimates of variance, we should also consider the possi-
bility that some of the covariances are real—i.e., that perhaps the errors of measurement are correlated

*In Ref. 4, Hanumara proposes some nonnegative estimates of imprecisions of measurement for the three-instrument case. In
par. 2-5 we give in some detail the maximum likelihood (ML) estimates which are ordinarily recommended for use in
applications.
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with each other or are possibly correlated with the level of true values measured. Of course, there is “quite
a game” concerning just what the best or true hypothesis might be in the absence of appropriate informa-
tion, and one might well have to examine his particular set of data closely to make a valid judgment. If
the variation of true values is not over a wide interval, it could be hypothesized that the errors of mea-
surement are correlated. This particular problem has recently been studied by Yang (Ref. 5). Yang’s
treatment assumes that S? is the largest variance and estimates o7 + 031 and that S? estimates of + 032 as
before, but that due to correlated errors, S, would estimate the population values given by

E(Srs) = 0')3 + Oc e,y = 0,3 + POe O, (2-27)

where
p = true unknown population correlation coefficient of 1, and I, errors
0., = large sample or population covariance of the errors of 1, and I, if it is nonzero.

This approach therefore brings forth the need to treat and estimate another unknown p, if it exists, for the
data under study. In this connection, one also notes that the large sample or expected values of Egs. 2-25
and 2-26 then become

E(S?— Sw) = 0z, — po.,0e, (2-28)
and

— 2
E(S: — Sy) = 02, — poe,0e, (2-29)

E(S? — S.s) = expected value of the estimate of the population variance of errors of measure-
ment for instrument I, if the covariance of errors is zero

E(S?— S,) = expected value of the estimate of the population variance of errors of measure-
ment for instrument I if the covariance of errors is zero.

Yang (Ref. 5) suggests that the lower bound of the unknown p may be estimated from
=, 0H= S = ISHISI IS I(S: —'S9) (2-30)
where we have also indicated that the upper bound of p® has to be unity, of course. Ref. 5 also suggests
the use of the lower bound given by Eq. 2-30 if |S7 — SZ|/(S? — Sy is “close to unity”; if not, the midpoint
of the extreme values of Eq. 2-30 should be used, i.e., take
p® =~ (1/2) (1 + RHS of Eq. 2-30) (2-31)
where o HS = “right-hand side of™
This means that putting
K =[(S7— S — 487 — 5w) (S: — Si)]2. (2-32)
Then o2, and o¢, are to be estimated from
esto?, = (S7— S2) (387 — 28 — Si £ K)/[2(S7 — 28 + SD)] (2-33)
estos, = (82— S7) (387 — 285 — ST F K)/[2S7 — 285 + SD)]. (2-34)

The upper signs before K—i.e., + in Eq. 2-33 and — in Eq. 2-34—are to be used if |SF— S21/(S7— Sis)
is very close to unity (Ref. 5), and the lower signs before K, i.e., — and +, otherwise.
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The estimate of product variance o} is then found to be
estof = S7 — estoez1 =Si— estaezz. (2-35)

where estcrg1 and estcx§2 are calculated, using Egs. 2-33 and 2-34, respectively.
Using the data of Example 2-1, we find from Eq. 2-30 that Yang’s estimated lower bound for p’is

p>=0.7118
and

182 — Sis] /(S? — Sys) = 0.3013 (assumes n = 30 for S7)

is not close to unity; accordingly, the lower signs before K in Eqs. 2-33 and 2-34 should be used. By doing
so, we obtain

estoe, ~ 0.04817
estoe, =~ 0.01710%

and from Eq. 2-35
estax = (0.04714 — 0.002320)"* = 0.2117

as contrasted to 0.2135 determined before.

In summary, we see that Yang’s estimators have the desirable property of being both nonnegative and
nonzero; however, we will see that his imprecision estimates are high as judged by the more precise case
where all three instruments are used (par. 2-5). Moreover, we accomplish an additional advantage by
simultaneously using three measuring instruments as in par. 2-5—as indicated by I, I, and I; in Table
2-2—this case being formulated to use only the differences in instrumental errors of measurement, com-
pletely free of product true values.

With these attempts, and even for the respectable sample size of 29 or 30, we see that the two-
instrument case may lead to somewhat disappointing results although the negative estimates of variance
need not bother us too much. Indeed, for any very important experiment of measurement, it may be well
to employ three or more instruments, or laboratories, or alternatively we can always use a very satisfying
statistical test of significance for the two-instrument case; this test is discussed next.

2-43 A SIGNIFICANCE TEST ON IMPRECISION BASED ON TWO INSTRUMENTS

Fortunately, we need not be too concerned by occasional, or even frequent, negative estimates of vari-
ance for instrument imprecision. This is because a significance test is available concerning a hypothesized
ratio of the product standard deviation to the standard error of measurement. This statistical test of
significance was developed by Thompson (Ref. 3), who based it on a result of Roy and Bose’s (Ref. 6).
The procedure consists of specifying the ratio o./ 0. ** (or o/ o)) as a measure of relative precision in
which one might be primarily interested and then making a Student’s ¢ test to see whether the test would
reject the null hypothesis concerning that ratio. In other words, if ox/ 0.; = 5 1s acceptable, which indicates
that the standard error of measurement is only one-fifth that of product variability or true value standard
deviation, the precision of measurement is quite satisfactory. On the other hand, if for example the ratio
were as small as ox/ o., = 1 or even 2, the relative precision of measurement would be so poor that a more
precise measuring instrument would be required. The Student’s ¢ test suggested by Thompson (Ref. 3) is,
using (n — 2) df,

tn — 2, 0x/0.) =/n — 2[S/(S783 — SN [(Ss/S7) — 03/ (05 + 0z )], (2-36)

*Some recent results have been obtained. See Ref. 5.

**This ratio is often referred to as the “accuracy ratio” although the term product/ precision of measurement ratio or simply
precision ratio would be much better.
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By taking 1. equal to the upper a probability level or percentage point of the Student’s ¢ distribution, Eq.
2-36 is less than 7., if and only if

Srs —l-a SfS.? - S%s —2 12 *
2 > o[ =21 e

87— Si + 11 [(S252 — S2)/(n — 2)]>

A very similar test for ox/ o., relative to the second instrument is readily obtained by replacing the first S?
in the denominator of Eq. 2-37 with S, or similarly S} by S¥, and Sys/ ST by Sis/Stin Eq. 2-36.

Example 2-2:

Referring to Example 2-1, we are not concerned about the imprecision of measurement for I, because of
the near zero standard error of measurement, but let us test the hypothesis that o,/ 0., =5 at the upper 5%
level.

By using Eq. 2-36, we calculate for n = 29 readings for I,

2 1/2
127, ol 00 = 5) = /2T [ (0.04675) 2] 2(0.04558 _ 25\ — 1,583
(0.04675) (0.04511) — (0.04558)) \0.04675 26

whereas 7095(27) = 1.703. Hence we accept the null hypothesis that o,/ o, = 5 for our measurement
process. We note in passing that if we stated ox/ g., = 3.82, this hypothesis would be just barely rejectable
at Pr =0.95.

Actually, an estimate of g. = 0.03 or 0.04 for either measuring instrument may not be very good for
estimating the true value of burning time for a single round although for the average of 30 rounds, the
value of ¢./1/30 = 0.04/+/30 = 0.007 may not be considered too poor. Finally, concerning true product
variability, we see that

V82 =4/0.04714=0.2171s  (n = 30)

VS = esto, = 0.2135s  (n = 29)

and

which perhaps shows a small or negligible difference for the effect of o, on the true variability of the
product.

2-4.4 VARIANCES OF ESTIMATORS OF IMPRECISION OF I; AND I,

For many applications it is often proper to assume that the product values x; and the errors of measure-
ment e are normally distributed or approximately so. For this case and the use of two instruments,
Grubbs (Ref. 2) derived variances of the estimators—Eqs. 2-24, 2-25, and 2-26—in 1948 to obtain some
idea of the reliability or precision and stability of results. As given in Ref. 2, the population variance of
the estimate of 031 is

Var(estoﬁl) = E(est(ogl) - 031)2

r2 1
= ( — 1> ot +< - l>(0303, + oiol, + ot o2). (2-38)

Likewise, the population variance of the estimate of 032 is given by

*For an upper bound, the signs of the #,-4’s are reversed.
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Var(estor,) = E(estor, — o¢,)’

2 1
- <——> ot + <———)(o§o§l + alol, + o0l (2-39)
n—1 n—1

and the population variance of the estimate of product variability is given by

Var(estof = E(esto,% — ¢d)?

2 1
1 <n—_—_l> Oi - <_—n_—__l>(030‘2’1 + or’3032 + 031052)' (2-40)

It is noted that the Var(estoﬁl) depends on (1) o2, the variance in the characteristic measured; (2) o?l, the
variance of the errors of measurement of instrument Iy; (3) 032, the variance of the errors of measurement
of instrument I; and (4) n, the number of observations or the sample size. Therefore, to obtain a precise
estimate of o?l when using only two instruments, the variation in the characteristic measured, i.e., o,
should be held to a reasonable minimum to study imprecision, or the sample size n should be sufficiently
large for two instruments.

If the variation in the characteristic measured is zero (or if we measure the same item repeatedly), i.e., if
o2 =0, one could compute

/ 1 n
estos, = (n — 1>i:x(€” —e)’ (2-41)

directly with the variance of the oﬁl equal to

2
Var(esto?,) = ( Yot (242)

n— 1

Apparently, when employing two instruments, there are only two straightforward computational proce-
dures of interest for separating the variability in the product from the variance in the errors of measure-
ment, and both methods give the same estimate. In using either method, however, it is possible to estimate
aﬁl, o%z, and o2 and thus determine from the relative order of magnitude of these quantities whether the
instruments are sufficiently precise for use in taking the required measurements.

For the two-instrument case the experimentalist may employ very similar or the same kind of instru-
ments. Let us suppose that this is the case, so that

2 2 2
051—032_0(3.

Then Eq. 2-38 becomes

2
Var(estof,l) or Var(estaﬁz) = < > o} +<

— ) (6% + 20307 (2-43)

=5 |l

which also involves product variability os

Although it seems not entirely satisfactory to calculate the reduced Eq. 2-38 or Eq. 2-43 when our
estimate of o, is zero, we may get some rough idea of the variance of the estimate of af,l in Example 2-1. It
is
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Var(estoz,) = (2/29) (0.001558)> + (1/29) [(0.001558)’

+ 2(0.04558) (0.001558)] = 0.000005148. (2-44)
Thus the standard error of the estof,1 =0.002269, which is larger than the estimate itself!

One is bound to feel somewhat uncomfortable about obtaining the estimate of imprecision of the first
instrument I; as estae = 0.001558 and then finding that the expected standard error of that estimate 1s
even larger. This may be due partly to the fact that the estimated o7 of 0.04558 is 29 times the estimated cre1
= 0.001558. Expressed another way, the second term of Eq. 2-44 is about 30 times the first, which is free of
the product variability o,. Hence using three instruments may definitely be of considerable interest and
value.

2-5 THE SEPARATION OF PRODUCT VARIABILITY AND INSTRUMENT
IMPRECISION WITH THREE INSTRUMENTS

By using three instruments to measure either simultaneously or the same series of items or characteris-
tics and by working with the three sets of differences in readings, the product values cancel out and only
the differences in instrument biases and random errors remain. Thus if the errors of measurement are
relatively small or if the biases are constant and the variance of random errors is a rather low fraction of
product variance, then it would be expected that more precise estimates of the imprecision of measurement
would be obtained from three instruments as compared to two.

Let us represent the ith reading of the third instrument I3 symbolically by

ti=xi+ B+ €. (2-45)

We then have the three differences in instrument readings given by

ui=ri—si=p— Bz+€i1 € (2-46)
vi=si—ti=B— Bite,— e (2-47)
wi=ti—ri=pBs— B te,—e (2-48)

where
u; = difference in readings of instruments I, and I, for the ith item
v; = difference in readings of instruments I, and I; for the ith item
w; = difference in readings of instruments I3 and I; for the ith item.

Eqgs. 2-46, 2-47, and 2-48 are completely free of any product or true values and involve only differences
in the constant biases and differences in random errors of measurement of the three pairs of instruments.
Hence it is easily seen that if the instrumental errors are uncorrelated or are statistically independent, the
three instrumental imprecisions may be easily and efficiently estimated. In fact, as shown by Grubbs (Ref.
2), the appropriate estimates of imprecision are

estos, = (Si — So + Si)/2 (2-49)
= S%" Sis — 157 =i Sir

estoz, = (Si + S5 — S7)/2 (2-50)
= 85— S+ Su— S

est oz, = (—Si + Sv + S)/2 (2-51)
= S%+ Srs — S — Su
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where
S = sample variance of the difference in readings of instruments [, and I,
S2'= sample variance of the difference in readings of instruments [, and I,
S2 = sample variance of the difference in readings of instruments 15 and I,
S, = covariance of the readings of instruments I, and I;
Ss: = covariance of the readings of instruments I; and I3
Srs = covariance of the readings of instruments; and I.

Even though the variance and covariance terms of each second-listed RHS involve product true values,
the estimates of imprecision for the three-instrument case are entirely free of product level. For example,
the second-listed RHS of Eq. 2-49 is symbolically

esta?l = Sgl - Selez ol Se1e3 + Seze3- (2'52)
It contains no x’s.

For independent and normally distributed errors of measurement, the variances of the three estimates
of instrument imprecision are (Ref. 2)

1
2
Var(esto?) = —— (orﬁl)-i-( >(0§10i2 + o%,0%, + 032033) (2-53)
n—1 n—1
2 |
Var(estoiz) — I GJ:,)":‘L‘ (azelorﬁ2 + oﬁlo§3 + ‘73’2‘73’3) (2-54)
= : — 1
2 1
Var(estos,) = —— (oz3>+< (00,00, + 0%,0%, + 02,00,). (2-55)
n—1 n—1

Note also that the variances of the estimated variances of errors of measurement are free of product
variance o2 and, correspondingly, should be smaller.

The estimate of product variability or the variance of true values is simply the average of all three
covariances of the readings of the three instruments. Thus

eStU)z( = (Srs + Sr + SSI)/3
= é[sfm, - % (St + 87+ )] (2-56)

= Sl —1—18 (SI+ S2+ S2)

where
S?.s+: = sample variance of the sum of the three instrument readings for each item measured
SZsa = sample variance of the average of the three instrument readings for each item
measured.

The variance of Eq. 2-56 is
2

Var(esto?) = (” )oi+[g (07 0, + 0% 0¢, + 03 0¢,) (2-57)

1, > 5 5 b 2 2
+ 9 (0¢, 0e, + Oc, O, + Oc, Oc,)].
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Example 2-3.
Given: The data of Table 2-2 for three simultaneous instrument readings on fuze burning times for the
30 time fuzes.
Find: The best estimates of instrument imprecisions, the round-to-round true dispersion, and determine
the variances and standard errors of the estimates.
. Using the last three columns or differences in readings of pairs of instruments on each fuze time, we
calculate

S =S2.,= 0.0007030 s°
SZ= 8%, = 0.0008878 s>

S:=S%, = 0.0003108 s>

Then from Eqgs. 2-49, 2-50, 2-51, and 2-56 we obtain

estaz, = (0.0007030 — 0.0008878 + 0.0003108),2
= 0.0000630*
esto,, = 0.00794s

estaz, = (0.0007030 + 0.0008878 — 0.0003108),2
= 0.000640*
esto., = 0.0253 s

estoﬁ3 = (—0.0007030 + 0.0008878 + 0.0003108)/2
= (0.0002478*
esto., = 0.015s

estoz = 0.046087 — (1/18) (0.0007030 + 0.0008878 + 0.0003108)
= (0.04598*
esto, = 0.2144s.

We note that all three estimates of instrumental imprecision are always positive; that they are straight-
forwardly estimated from the difference in errors of measurement without questionable boundary condi-
tions; that instrument I, is the more precise one, and that I is the worst of the three. Thus the addition of
the third instrument to the case of only the first two, where negative variance estimates were obtained,
certainly seems quite worthwhile, or even sorely needed. We do not actually know whether these instru-
- mental errors are correlated or whether the covariance terms otherwise really have nonzero expectation
although the estimates of imprecision based on the Yang (Ref. 5) approach for I, and I, are rather high as
we now see.

Using Egs. 2-53, 2-54, and 2-55 next and the previously determined estimates, we calculate the variances
and standard errors of the estimators:

Var(esto?,) = 0.00000000767
a(esto?,) = 0.0000876

*Forreaders interested in a Bayesian approach to the estimation of precision of measurement, see Draperand Guttman (Ref. 7). They
obtain est(oz,; 07) = 0.010675, est(o‘:’.,, 01) =0.001060, and est(af,;, 0x) =0.004109, whereas our equivalent estimates of these ratios are
0.00137,0.0139. and 0.00539, respectively. '
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Var(estos,) = 0.00000003565
o(estoz,) = 0.000189

Var(estoz,) = 0.0000000116
o(estoz,) = 0.000108

where
o ) = population standard deviation of quantity in parentheses.

These values are much smaller than corresponding values for the two-instrument case as would be
expected since they are free of product variation. Therefore, the three-instrument estimates are quite
worthy of adoption since they are entirely satisfactory and conclusive in nature.

For the product variability we have from Eq. 2-57

Var(estoz) = 0.000165
oesta?) = 0.0128

which is 0.0128/0.0000876 — 146 times o(estoil)!

With this example and the informative numerical values or estimates obtained, we begin to see the
advantage of employing three or more instruments to study precision and accuracy of measurement.
Indeed, the use of three measuring instruments should be considered neither an extravagance nor a lux-
ury, especially since it may take three or more instruments to reduce the variances of the estimates of
imprecision to suitable values for precise understanding of instrument capability. In fact, the use of several
instruments in any important measurement study leads to the idea of “interlaboratory testing”, which has
long been practiced by the chemical and other industries for the purpose of quantifying precision and
accuracy. Moreover, it has been wide practice to measure standard material at even ten or more laborato-
ries in a “round-robin” procedure—as such studies indicate which laboratories are imprecise and inaccu-
rate as well—so that the offenders may be “brought into line”. The standard error of measurement at a
single laboratory is often referred to as the “repeatability” sigma, whereas that among the laboratories
—which includes the standard error of an average value for a single laboratory—is called the “reproduci-
bility” sigma.

Having given a somewhat extensive account of the estimation problem for two and three instruments,
we will now give several important statistical tests of significance concerning precision and accuracy,
which supply the most desirable type of information. '

2-6 SIGNIFICANCE TESTS FOR PRECISION AND ACCURACY OF TWO
INSTRUMENTS

2-6.1 PRELIMINARY COMMENTS ON SIGNIFICANCE TESTS FOR TWO
INSTRUMENTS

While the estimation of precision and accuracy of measurement parameters is important, comparisons
of the relative values of the unknown parameters are also very essential and may be used as a basis for
action. For example, consider the two-instrument case for measurements. Here we would like to compare
the unknown precision or imprecision of instrument 1 with that of instrument 2 on the basis of, “Does I,
have a larger or smaller standard error of measurement than 1,?”. If the instruments are of the same type,
it would be expected that they would have equal standard errors of measurement although one might be
poorer than the other if it is not used properly, has been damaged, etc. Once the question of relative
precision of measurement has been answered, it becomes quite important to determine whether there is a
difference in constant bias of the two instruments. If a test of significance indicates there is a significant
difference in biases or systematic errors, the instruments should be calibrated to read properly.
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The test of precision is a test of whether o, is equal to, greater than, or less than o.,. Should it be true
that one or both of the instruments has too large a standard error of measurement, there may be quite a
fundamental problem in correcting the difficulty. On the other hand, it could be satisfactory that an
increase in the number of measurements will lead to suitable precision, perhaps especially for the average
measured value. Fortunately, from this test one also may settle the problem concerning whether the
standard error of measurement of one of the instruments is some specified multiple of that of the other.
This will be illustrated in the sequel.

Regardless of whether or not it is possible or economical to reduce standard errors of measurement of
the two instruments to suitable values if they are much too large, it is nevertheless of great importance to
determine whether calibration is called for or at least to make a correction in the readings of one or even
both instruments. The statistical test of significance used in this connection determines whether we can say
that the bias B of the first instrument equals the bias 8, of the second instrument or whether one is
larger than the other.

2-6.2 TEST OF WHETHER 0., = 0., (PRECISION COMPARISON)

The test on relative precision of measurement involves taking the sum p; and the differences u; of the
readings of the two instruments, i.e., Iy and I, for example, which are

p,-=r,~+s,-=Bl+Bz+2x,-+e,-1+e,-2 (2-58)
ui=ri—si= p1— B2+ e1 — en. (2-59)
On the assumption of statistically uncorrelated errors of measurement and true values, it is easy to see that
the population or expected correlation coefficient ppu of p and u is
2 2
Oel 0e2

s (2-60)
[(40} + o, + o) (0F, + 021"

and hence that the test of whether o. = o, is precisely a test of whether the population correlation

ppu = 0. This is easily accomplished on the basis of the Pitman-Morgan test (Refs. 8 and 9) as developed
for the purpose by Maloney and Rastogi (Ref. 10). In this connection, one simply calculates the sample
correlation coefficient r,, and refers it to a table of percentage points of the correlation coefficient of the

bivariate normal distribution or uses the ordinary Student’s ¢ test given by Eq. 2-62. First, the sample
correlation coefficient is given by

P = (82— SY/[(S2+ S2+ 28,) (S + 2 — 281"

also
o= Sf; . (2-61)
Then the Student’s ¢ test based on (n — 2) df is
tn—2, 00, = 0e)) = rpu (n — 2)? /(1 = r5)"”
_IsysH—1m—2" (262

[4(1 — rk) 7/ 83"
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We will illustrate this test with an example (Example 2-4) of O’Bryon (Ref. 11) concerning the precision
and accuracy of velocity chronographs. Also we thought it desirable to illustrate calculations for a smaller
sample size, and hence less stable results, than for the data of Table 2-2. This problem arose from a NATOQO
study on velocity chronographs submitted for acceptance or standardization. It was apparently dzsirable
to use two reference or “standard” chronographs, since two are better than one reference instrument, to
judge a third chronograph submitted for acceptance. Perhaps it was considered that such a procedure
would result in more confidence and provide some checks on the test results. The choice of the two
standards for initial tests is somewhat arbitrary indeed although pair wise comparisons of the three
instruments can be made simply by permuting the instrument designations—i.e., the r, si, and 1,—as
desired. We examine I; and [, only at this point.

Example 2-4.

Three velocity-measuring chronographs, the “Fotobalk”, the “Counter”, and the “Terma™ instruments,
were used simultaneously to determine velocities of each of twelve successive rounds fired from a 155-mm
howitzer*. The velocities were recorded in meters per second (m/s), and the individual velocity measure-
ments are given in Table 2-4. Also recorded in Table 2-4 are the sample variances, the estimated impreci-
sions of measurement, the estimated differences in biases or systematic errors, and estimated true product
variability. We assume here that no past data are available on precision of measurement for the “stan-
dard” instruments, the Fotobalk and the Counter, and our purpose ultimately is to check out the precision
and accuracy of measurement for the Terma, or “test”, instrument. Eqs. 2-49 through 2-51 are used to
estimate the standard deviations in errors of measurement for each of the three instruments; the computa-
tions are shown in Table 2-4. The estimated standard error of measurement (0.468 m/s) for the Terma
chronograph seems larger than that for the other two chronographs. We will check this value later after
checking out the two “standards™, the Fotobalk and Counter—designated 1, and 1,—for relative precision
and agreement in level of measurement or for bias.

First, we find the sums p; = r; + s; and differences u; = r; — s; of the velocities for the Fotobalk and
Counter instruments and compute S; = 7.508, S? = 0.0590, Spu = 0.1748, so that from Eq. 2-61 r,, =
0.2626, and from Eq. 2-62 we find

1(n—2, 00, =0.,) = rpu/n—2/[1 = ri]"* = 0.861%*

for Student’s 7 to compare o., and o, whereas fo90(10) = 1.372 and #045(10) = 1.812. We therefore
conclude that the Fotobalk and Counter chronographs have equal precision of measurement, even though
for 12 rounds Gel = (.081 m/s and 892 =0.229 m/s as indicated in Table 2-4. Had we used a much larger
sample size, we possibly could have established that I, is much more precise than I, although we were not
able to detect any difference in precision of measurement for the two instruments for only n = 12
observations.

2-6.3 TEST OF WHETHER B, = 8, (ACCURACY TEST)

Next we check the agreement in the true unknown levels of measurement for the Fotobalk and Counter.
This step is clearly and easily accomplished by using the differences in readings of I, and I, oru; =r; — s,
and computing Student’s ¢ from

to(n—1, B = B) = u\/n/S. (2-63)
= —0.608 \/12/(0.2429) = —8.67

*Velocity firings generally destroy the projectiles.
**The ¢ value of 0.861 for 10 df actually corresponds to a probability of about 0.79.
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TABLE 2-4
ESTIMATES OF PRECISION OF MEASUREMENT ON THREE SIMULTANEOUS VELOCITY .
MEASUREMENTS OF THE FOTOBALK, COUNTER, AND TERMA CHRONOGRAPHS (Ref. 12)

Round No. Foto Counter Terma Mean r—s s—t t—r
I, I, I3 VCIOCity, =u =y =w
r s t m/s

20 793.8 794.6 793.2 793.87 —0.8 +1.4 —0.6
21 793.1 793.9 793.3 793.43 —0.8 +0.6 +0.2
22 792.4 793.2 792.6 792.73 —0.8 +0.6 +0.2
23 794.0 794.0 793.8 793.93 0.0 +0.2 ~0.2
24 791.4 792.2 791.6 791.73 —0.8 +0.6 +0.2
25 792.4 793.1 791.6 792.37 —-0.7 +1.5 —0.8
26 791.7 792.4 791.6 791.90 —0.7 +0.8 -0.1
27 792.3 792.8 792.4 792.50 —0.5 +0.4 +0.1
28 789.6 790.2 788.5 789.43 —0.6 +1.7 —1.1
29 794.4 795.0 794.7 794.70 —0.6 +0.3 +0.3
30 790.9 791.6 791.3 791.27 —0.7 +0.3 +0.4
31 793.5 793.8 793.5 793.60 —0.3 +0.3 0.0

Si= Sts=10.0590 u=p,—pB,+e —e, =—0.608

§;=5%,=0.2711 v=8,—B,+e,—e, =+0.725

Si= St,=0.2252 w=p,— B, +e —e =+0.117

estoﬁ1 = 0.5(0.0590 + 0.2252 — 0.2711) = 0.0065 (Eq. 2-49)
esto., = 0.081 m/s
(Foto)

estof_,2 = 0.5 (0.0590 — 0.2252 4+ 0.2711) = 0.0525 (Eq. 2-50)
esto., = 0.229 m/s
(Counter)

estoi3 = 0.5 (—0.0590 + 0.2252 + 0.2711) = 0.2186 (Eq. 2-51)
esto., = 0.468 m/s
(Terma)

estoy = 1.42 m/s = estimated standard deviation of the true
velocities of the rounds (Eq. 2-56).

Reprinted with permission. Copyright © by American Statistical Association.

which for (n — 1) = 11 df is very highly significant (¢, is the observed value of 7). Thus we would look for
the cause of this disagreement, i.e., run a retest of the two “standards”™ or calibrate them since the Foto-
balk reads 0.61 m/s lower than the Counter. In this case, however, the sample variance of the differences
in errors of measurement is very small, i.e., Si = 0.0590 (or S, = 0.2429), and our ¢ test is sensitive enough
to pick up easily a difference of 0.61 m/s in velocity levels. It could happen, for example, that the Foto-
balk might be found, through more testing, to be more precise than the Counter and hence could be easier
to calibrate. Also, in the absence of any further data, we might recognize and correct for the apparent
difference of 0.61 m/s. (The correct direction is unknown!)
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2-6.4 LARGE SAMPLE TEST OF WHETHER o, or 0., EQUALS ZERO

Maloney and Rastogi (Ref. 10) point out that for large sample size n Wilks’ (Ref. 13) likelihood ratio
test may be used to detect whether a. or o., can be considered to be zero. To test the hypothesis that o¢
= 0, for example, they point out that the likelihood ratio A is

A= {(SIS:— S%) | [SHST+ 8:— 251 ™° (2-64)
and according to Wilks (Ref. 13), then
—2Ink = X* (D). (2-65)

That is, —21nA follows the chi-square distribution with 1 df. If we desire to test whether o., = 0, the single
factor S; before the brackets in the denominator of Eq. 2-64 would be replaced by SZ2

Example 2-5:

Return to the data of Table 2-2, where for the two-instrument case it seemed necessary to take o, = 0.
Is there any evidence from the Maloney-Rastogi test to conclude that actually o., = 0?

To answer this question, we have n = 29, SZ=0.0467544, S: = 0.0451123, and S, = 0.04558109. (We
omitted the 10.01 of I, for which I, lost a round.) Hence from Eqgs. 2-64 and 2-65

—2In\ = —2 In [(0.000031489)/(0.000031709)]'** = 0.2019.

The observed value of —2InA = 0.2019. Referring this value to a table of probability levels of x*(1), we
find P =~ 0.35. Thus we must accept the null hypothesis that o., = 0 and conclude this is possib]e We
could not reject the null hypothesis that o., = 0 unless the value of Ss, substituted for the single S;in Eq.
2-64, would give a value calculated by Eq. 2 64 exceeding the upper 5% level of x*(1).

2-6.5 TEST FOR WHETHER o., = ko., AND SHUKLA’s TEST

We return to the significance test of Eq. 2-62 for the two-instrument case where we test whether Oe, = 0O,
or whether the true population correlation coefficient of Eq. 2-60 is p = 0. Our procedure is actually to
assume p = 0; to calculate the observed or sample correlation coefficient r,, in Eq. 2-61; and then refer this
value to a table of the null distribution of r,, or use Eq. 2-62, to determine whether it is significant.
Similarly, we may assume or hypothesize any value of p for —1<p<l, p # 0; calculate the sample r,,; and
then refer the latter calculated value to the proper table of r = rp, for the assumed value of p # 0. This
means that the hypothesized value of p is calculated from Eq. 2-60 with, for example, o., and o, as
specified multiples of o, etc.

An alternative, approximate procedure is to calculate

l@{ln[(l +r)/(1 =] — In[(1 + p)/(1 — p)]} = N(O,1) (2-66)

which for large sample size n has been shown by R. A. Fisher to be approximately normally distributed
with zero mean and unit standard deviation.

We may obtain a “numerical calibration” of the value of Eq. 2-66 for small n by making a calculation
relative to Example 2-4 and the data of Table 2-4 for I, and I,. We found that the observed r,, = 0.2626,
and for n = 12 with the assumption p = 0, the left-hand side (LHS) of Eq. 2-66 is

AE;?’[ln(l + 0.2626)/(1 — 0.2626)] = 0.81
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which, when referred to a normal probability table, gives a chance of 0.79* for a one-sided test or 0.58 for
the two-sided test, a very accurate value for n = 12! By examining Eq. 2-60, it is seen that if the product
variability o, = 0, the population correlation coefficient p becomes

pou = (03, — 02))/ (0%, + 02,). (2-67)

In this case the significance test based on the observed sample correlation coefficient r = r,, would be very
sensitive to unequal (or equal) o., and o.,. Otherwise, as ox approaches larger and larger values relative to
0., and o.,, the product variability dominates Egs. 2-60 and 2-61, so that the ratio o.,/0., = k becomes
obscured and the test becomes insensitive.

Example 2-6:

With reference to Example 2-4 and the data of Table 2-4, is it reasonable to conclude that we could
have a highly distorted ratio such as 0., = 90, when we take the product variability to be o, = 1.42 m/s
and hence show test insensitivity?

We could estimate that ox/o., = 1.42/0.229 = 6.20 or ax = 55.80¢, which is large indeed, and substitut-
ing this value and the assumption o, = 90, into Eq. 2-60, we calculate estp = pp, =~ —0.0789, a near zero
value.

The sample correlation coefficient in Example 2-4 was calculated to be

r = rpu = 0.2626.

Hence from Eq. 2-66

J12=3 [ln <1 - 0.2626)_ 1n<1 — 0.0789 >] —iv0q

2 1 —10.2626 1+ 0.0789

which, when referred to a table of the standardized normal probability integral, gives an insignificant
probability P of P = 0.85 (one-sided). Consequently, we do not reject the null hypothesis that perhaps the
ratio o, = 9o., could be true!

Shukla (Ref. 14) has proposed a very clever test concerning whether o¢, = k0%, and has thus general-
ized the Maloney-Rastogi (Ref. 10) test. Shukla (Ref. 14) puts

ui=r;— s;,as we do in Eq. 2-47,
but
gi=si+Kkr (2-68)

where we call our instrument I, Shukla’s 1. For this formulation the population correlation coefficient p
of Eq. 2-60 is changed to

_ 0%2 — kzcxf,l
p= {( 2 + 2 2 + 4 2 + 2 221y 1/2 (2-69)
Oe, 082) [Uez k Oe, Ox (1 +k ) ]}

and the observed sample correlation coefficient r = r,,** between the random variables # and g in terms of the
original instrument readings r; and s; is

2 202 2
RN PR S:— k'St + (K" — S;s | o

NG [(S?+ S2— 28.) (SE+ k*SE+ 2k*S,)]'?

*For a two-sided test, the chance would be 0.58, which would usually be more appropriate.

**Although r, is used in this chapter as an instrumental reading, the notation “r” is widely used as a correlation coefficient.
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Hence to test the null hypothesis that 0., = koe,, we also use the Student’s ¢ test as did Maloney and
Rastogi (Ref. 10), or the first form on which our Eq. 2-62 is based, i.e.,

i — 2, 0., = ko) = e VR 72 2-71)
(1= ri)'”
When k = 1, the Shuk!a test (Ref. 14) is precisely that of Maloney and Rastogi (Ref. 10). Putting k = 0
tests whether 0., = 0. (We note also thatsiwhen k = 1, Eq. 2-69 becomes the negative of Eq. 2-60. This
change in sign is due to our switching instruments in Shukla’s notation to test our O, = koe,.)

We will use Shukla’s test to judge whether 0., = 90, , or, that is, solve Example 2 a different way. We
calculate

SE=1.9790, SI=1.8042, S,s = 1.8621.

Then with k£ = 9 we find from Eq. 2-70 that

r=-—0.340
and from Eq. 2-71,
t=-—1.14
which is not significant at the 0.05 level since 7005 = —i.812. Thus we cannot reject the stated hypothesis

0., = 90, with Shukla’s test either! (This dgain demonstrates test insensitivity!)

So far for the two-instrument case, we have accepted the null hypothesis that 0., = 0c,and that o, # 0;
now we have also accepted the hypothesis that 0., = 90.,! This certainly amounts to some unpleasant
contradictions, but perhaps it also possibly indicates the relative insensitivity of significance tests to the
components of variance studied here, especially for small # and esto. near zero. More will be said about
this problem for the three-instrument case, for which we will demonstrate also that perhaps much larger
sample sizes may be required.

2-7 SIGNIFICANCE TESTS FOR THREE INSTRUMENTS*
2-7.1 INTRODUCTORY REMARKS

Having seen some problems with estimation and significance tests of precision and accuracy for only
two instruments, especially since the product variability might mask desired comparisons, we now examine
some appropriate statistical tests of hypotheses for measurements with three instruments—I, I, and I.
For the three-instrument case we saw that the estimation of precision and accuracy parameters turned out
to be very favorable indeed and no doubt worthwhile.

For the three-instrument case several statistical tests of significance are available that appear to be very
useful indeed. We should, however, pause to reflect on just which statistical tests would be the more
desirable ones. In view of the masking problem caused by product variation for two instruments, it
certainly seems desirable to use three instruments for determining whether o., = 0., for the first two
“designated” instruments without regard to the imprecision o., for the third instrument. Also there is the
problem of being able to determine just which of the three instruments is the “best” or the “worst”, so to
speak. Therefore, it becomes desirable to make comparisons of one instrument versus the other two. This
leads to using or establishing two of the instruments as “reference” or “standard” instruments to test the
“worth” of the third instrument. In fact, this may become especially desirable whenever we are dealing
with small sample sizes or until we can actually obtain enough valid information on precision and accu-
racy to depend on two of the instruments as good reference or standard ones. Finally, there will be some
need occasionally to test composite hypotheses concerning all three instruments and their precision and
accuracy capabilities. We will start with a test of whether 0. = 0., using data for all three instruments.

* For a recent development in testing the equality of three instrumental imprecisions, please see par. 2-12, “Additional
Discussion”.

2-29



DARCOM-P 706-103

2-7.2 THREE-INSTRUMENT TEST OF WHETHER o., = 0.,
For this case and the assumgption of normally distributed uncorrelated errors of measurement, Grubbs
(Ref. 12) has shown that the sppropriate test based on Student’s 7 is
[(S/S) =6l (n=2""
[46(1 — i) (S%/ 520" (2-72)

tn—2 0, =0.,) =

where
6 = ratio of the expected values of the variancesof v=s —randw =1 —r

and hence is clearly
— (2 2 2 2
0 = (0, + 0¢,)/ (0, + 0c,). (2-73)

Hence a test of whether ¢, = @, or whether I, and I are equally precise is also the test of whether 6 = 1
in Eq. 2-73.

Example 2-7:

Referring to Exampie 2-4 and the data of Table 2-4, where only the Fotobalk and the Counter were
used to determine whether o,, = g,,, we now use available data for all three velocity chronographs (includ-
ing the Terma) to test whether a,, = o.,.

By substituting in Eq. 2-72 we calculate

[(0.2711)/(0.2252) — 1] /10
{4[1 — (0.8847)7] (0.2711)/(0.2252)}'"

t(n— 2, G, = Oc,) =

=0.63 (10,95 = 1812)
which is not a significant value of 1 for 10 df. We conclude, therefore, that for the more precise test of the
three-instrument case aad for # = 12 rounds, we do not reject the hypothesis that 0. = o, or that the

Fotobalk and Counter possess equivalent precision of measurement. This result seems to substantiate the
need for a larger sample size.

2-7.3 THREE-INSTRUMENT TEST OF WHETHER o., = ko., (SHUKLA’s TEST)

Shukla (Ref. 15) has developed an apparently powerful test of whether o., = ko. when three instru-
ments are used. This Shukla test (Ref. 15) uses

u;=r;— s, as in Eq. 2-47
vi =5, — 1, as in Eq. 2-47
and then takes

h =y + (6 + ]) Vi (2'74)
where
5= 1/k%.

Then the sample correlation cogffigient between the random variables u and h is for § = 1/k’
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r= o = S/ (SIS (2-75)
=[Si+ 6+ DSW]{Si[Se+ 26+ DS + (8 + DS (2-76)
Again this leads to use of the Student’s ¢ test, or

=3
tn—2, 0., =ko,)=—2¥"" 7. (2-77)

(1—rin)"?

Example 2-8:

In Example 2-6 we carried out some two-instrument tests of whether 0., = 90, and concluded for
n = 12 rounds that we could not reject this hypothesis nor could we reject 0., = 0.,. In view of Shukla’s
more precise or powerful three-instrument test, apply it to determine whether we may conclude that O, =
9o .

We have

5:=10.05902, S$}1=027114, S.=—0.0525
6=1/9"=1/81=10.01235
and from Eq. 2-76 we find
r = ru = 0.00068499
and the Student’s ¢ of Eq. 2-77 is
(10, a., = 90.,) = 0.00217.

Again this is not a significant value of 7, so we must conclude from the more sensitive Shukla’s three-
instrument test that we cannot reject the hypothesis that o, = 9o.,!

The result of this test, using data for all three instruments, actually confirms our findings for the use of
only two instruments. Accordingly, we probably should have more confidence or assurance that the two-
instrument test of Shukla’s in par. 2-6.5 is really not too insensitive for departures from the assumptions or
hypothesized values about the ratio of large sample or population imprecisions o, and o.,.

In summary, for both the two- and three-instrument cases, we have insufficient information to reject
that o, = o.,—l1.¢., that I, and 1, are equally precise—and moreover, we have insufficient evidence to reject
that possibly o., = 90, ! Thus such questions probably could be scttled by increasing the sample size or
perhaps by use of a much more precise third instrument than the Terma. For example, better precision
might result in the test of Eq. 2-72 if 0., in Eq. 2-73 were much smaller or even for the Shukla test of Eq.
2-77 if we had a very precise third or standard instrument. Finally, the reader may appreciate that we have
selected an example that shows some possible difficulties one should expect for certain precision and
accuracy tests along with the probable requirement to perform sufficiently extensive calibration.

We have some reservations about the Fotobalk and Counter being compatible as reference or standard
instruments because we found a significant difference in instrumental biases, and there also is some sample
estimation evidence that perhaps o., may be as large as about 90.,; this perhaps is obscured by o.,. We
should, though, continue to accumulate precision and accuracy data. However, this need not be a concern
in what follows, for as it turns out we may compare the precision of measurement of the Terma with the
average precision of the Fotobalk and Counter and the bias of the Terma with the average bias of the
Fotobalk and Counter—a desirable procedure.
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2-7.4 JUDGMENT PROCEDURES FOR TESTING A THIRD INSTRUMENT

We will proceed to indicate the applicable significance test procedures to determine whether or not a
third or “test” instrument should be “accepted”. In particular, we will consider the Fotobalk and the
Counter as standard or reference instruments—until we get better ones or have more experience—and will
proceed to determine the usefulness of the Terma chronograph. The suitability of the Terma instrument
will be assessed by studying whether it is as precise and as accurate as the Fotobalk and Counter chrono-
graphs. The procedures discussed are covered thoroughly in Ref. 12, and the reader should examine the
computations in Table 2-5, where the sums (less a convenient origin, such as 1580) and differences of the
two reference instrument observations are given along with the differences in readings between the Terma
or “test” instrument and the average of the two standard instrument readings. Also certain correlation
coefficients are calculated for use as described in the significance tests that follow on precision and accu-
racy of the Terma versus the “average” of the Fotobalk and Counter.

To ascertain whether the variance in errors of measurement of the Terma chronograph is equal to that
of the average of the Fotobalk and Counter instruments, we use Ref. 12 and put

v=[o%, + (0¢, + 0,)/4]/ (0, + 02 ) = 3/4

in the statistic

i i i (S2/SE—v)\/n—2 *
to[n =2, o, = (0¢, + 0e,)/2] = (2-78)
[4v(1 — rl) 82/ 82

[(0.2334)/(0.0590) — 0.75] / 10

—{3[1 — (0.1959)%] (0.2334)/(0.0590)}'"*

= 3.00.

We therefore conclude that the Terma chronograph is not as precise as the (“average” of the) Fotobalk
and Counter instruments since fo9s (10) = 1.812.

We note from Table 2-4 that the standard deviation in errors of measurement for the Terma chrono-
graph is estimated as 0.468 m/s, and this instrument is measuring an estimated standard deviation in true
velocity of 1.42 m/s, so that it is of questionable precision for the measurements taken here. Nevertheless,
we may want to check on the speed measured by the Terma chronograph, which may be determined by
using the Ist column of Table 2-5 and calculating

ffn—1, Bs= (B + B2)/21 =Z \/n/S: (2-79)
= —0.421 /12/0.483 = — 3.02.

Since #045(11) = 1.796, we conclude that the Terma chronograph reads low by 0.421 m/s as compared to
the average of the Fotobalk and Counter. (Note that the bias of 0.61 m/s between the two “standards” is
even a bit larger.)

The variance in errors of measurement of the Terma or third chronograph may be estimated also from

estoz, = S7 — Si/4 (2-80)
= 0.2334 — 0.0590/4 = 0.2187 m/s,

*See Eq. 2-92 for the general value of ».
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TABLE 2-5

SIMULTANEOUS VELOCITIES OF THE FOTOBALK, COUNTER, AND TERMA
CHRONOGRAPHS WITH TEST VS STANDARD COMPARATIVE DATA ON EACH
OF TWELVE SUCCESSIVE ROUNDS, m/s (Ref. 12)

Round No. Foto Counter Terma (r+s)— r—s t—(r+s)/2
r s t 1580 =y =u =z
I, I, I3
20 793.8 794.6 793.2 8.4 —0.8 —1.00
21 793.1 793.9 793.3 7.0 —0.8 —0.20
22 792.4 793.2 792.6 5.6 —0.8 —0.20
23 794.0 794.0 793.8 8.0 0.0 —0.20
24 791.4 792.2 791.6 3.6 —0.8 —0.20
25 792.4 793.1 791.6 5.5 —0.7 —1.15
26 791.7 792.4 791.6 4.1 —0.7 —0.45
27 792.3 792.8 792.4 5.1 —0.5 —=0.15
28 789.6 790.2 788.5 —0.2 —0.6 —1.40
29 794.4 795.0 794.7 9.4 —0.6 0.00
30 790.9 791.6 791.3 2.5 —0.7 +0.05
31 793.5 793.8 793.5 7.3 —0.3 —0.15

Sy = [n3yi— (Zy)*1/[n(n — 1)] = [12(448.89) — (66.3)*]/132 = 7.508
Si = [12(5.09) — (—7.3)*]/ 132 = 0.0590
S7=1[12(4.6925) — (—5.05)*]/ 132 = 0.2334

S(z) = 0.483

Syu = [nZya — (Zy) (2w} /[n(n — 1)] = [12(—38.41) — (66.3) (—7.3)]/ 132
=0.1748

Suz =[12(3.325) — (5.05) (7.3)]/ 132 = 0.0230

Fyu = Syul (SaSy)"?

ryu = (0.1748)/+/ (7.508) (0.0590) = 0.2626

rue = (0.0230)/~/ (0.2334) (0.0590) = 0.1959

Mean (r —s) =u = —0.608 m/s
z=—0.421 m/s

Reprinted with permission. Copyright © by American Statistical Association.

which agrees with the value of 0.2186 computed by the equivalent equation in Table 2-4. Hence estoe, =
0.468.

The standard deviation of the mean velocities listed in the fifth column of Table 2-4—1j.e., from the
model x; + (81 + B2+ B3)/3 + (e + e + e3)/3—is found to be 1.43 m/s as compared to the estimated
true value of 1.42 m/s. Therefore, we conclude that the variance in errors of each measuring instrument is
appreciably smaller than the (population) variance of the velocities of the rounds. Nevertheless, some
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calibration of instruments may be highly desirable or even required. In addition, appropriate information
should continue to be acquired to designate finally standard or reference (very dependable) instruments for
calibrations and other purposes.

The theory of Ref. 12 should be generalized to provide a significant ranking of any number of measur-
ing instruments with regard to both precision and accuracy. This would amount to a very important and
highly practical accomplishment indeed. It is highly desirable that the significance tests developed should
point out the particular instruments that are relatively imprecise or inaccurate, as was attempted here.

2-8 CONFIDENCE BOUNDS ON THE UNKNOWN PRECISION AND ACCURACY
PARAMETERS, AND ALLIED ACCOMPLISHMENTS

Since we have developed several appropriate statistical significance tests concerning the unknown preci-
sion and accuracy parameters for two and three instruments, it becomes readily apparent to the reader that
confidence bounds on certain of the parameters or functions of them may be easily established although
the establishment of some others may be rather difficult.

2-8.1 CONFIDENCE BOUNDS ON (B8: — 8;) FOR TWO INSTRUMENTS

To begin with, it is easy to establish confidence bounds on the differences in biases between the pairs of
instruments. In fact, for instruments I, and I, and the assumptions of normality and independence, we
have that u =7 — 7 is normally distributed with mean (8, — ) and variance equal to (o,f1 i o?z)!n, which
involves the imprecisions and sample size n. Thus using Student’s ¢ distribution with (n — 1) df or Eq. 2-
63, the (I — 2a) confidence bounds on the true unknown difference (8; — f8.) in biases of I, and 1, are
found from

Prid—\/ntroSu<Bi—Br<u+\/nt-.SJ]=1-2a (2-81)

Also either a lower or an upper one-sided (I — «) confidence bound on (8 — B,) is clearly obtainable
from the end points of Eq. 2-81.

2-8.2 CONFIDENCE BOUNDS ON [B; — (81 + 82)/2] FOR THREE INSTRUMENTS

In a manner very similar to that of par. 2-8.1, it can be seen—using z = ¢t — (r + s5)/2, i.e., the last
column of Table 2-5—that the (1 — 2a) confidence bounds on the difference [8; — (8: + B2)/2] between
the bias of the third instrument and the average bias of the first two instruments are found from

Pr(z— \/;tl_a/Sz =B —(Bi+B)25z+ \/;tl_a/Sz] =1-2a. (2-82)
or alternatively an upper or a lower (1 — «) confidence bound. Student’s ¢ with (n — 1) df is used.

2-8.3 PRELIMINARY COMMENTS ON CONFIDENCE BOUNDS FOR PRECISION
PARAMETERS

Whereas confidence bounds are easily established on the true differences in instrumental biases or sys-
tematic errors, the theory is more complicated for the unknown precision parameters. To begin with, the
functional forms of the precision parameters are much more complex, and some nuisance parameters are
present, which make the problem analytically troublesome. In some cases, therefore, some calculations
may be carried out only when absolutely necessary or perhaps as a last resort. However, we will at least
indicate some of the problems involved and show how confidence bounds may be obtained for several
important cases. These statements apply primarily to confidence bounds on the desired ratios, such as
o,/ 0. Fortunately, as a result of rather intensive research in recent years, simultaneous confidence
bounds or regions for all of the parameters jointly can be found by the methods of multivariate statistical
analysis. We will give a brief account of useful results and will refer to the appropriate literature on the
subject.
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2-.8.4 CONFIDENCE BOUNDS ON PRECISION PARAMETERS FOR TWO INSTRUMENTS

A lower (1 — a) confidence bound on the relative precision of measurement, or ratio ox/0.,, is readily
available from Eq. 2-37. An upper (1 — a) bound is found by changing signs of the #1-.’s in Eq. 2-37. This
upper bound is taken as infinity if the denominator is negative or zero. (The same is true for ox/o.,.)

Confidence bounds on the population correlation coefficient of Eq. 2-60 may be found by using an
appropriate Student’s 7 statistic or even the normal approximation of Eq. 2-66. However, we note in Eq.
2-60 ‘that there is the nuisance parameter o, and that confidence bounds on the desired ratio, say o.,/ 0.,
must be found by the Shukla method that follows. If 1, and I, measure the same item » times, thereby
making o, = 0, then suitable confidence bounds for the ratio of imprecisions could be established through
the use of Eq. 2-67. In comparing only measuring instruments such a procedure may often be desired or
even necessary as a simple, practical approach to studying precision of measurement (instrument
capability).

For joint or simuitaneous confidence bounds or regions on all parameters for the two-instrument case,
including product variation, the results of Thompson (Refs. 3 and 16) are especially important and note-
worthy. Indeed, using multivariate statistical methods Thompson shows, for the two-instrument case, that
the probability is at least (1 — 2a) that the following three relations hold simultaneously:

lo2— (n — DSK| < M(n— 1) (S7 5" (2-83)

|02 — (n — 1) (S2— 8y) K| < M(n — 1) [S7 (ST + 8 —28,)]"° (2-84)
: ) o

lo2, — (n— 1) (52— Sw) K| < M(n — 1) [S5(S7+ 85 — 28] (2-85)

where the factors K and M are found in Table 2-6 (Table 2 of Ref. 3) for 2a = 0.0 and 2a = 0.05.

Example 2-9:

Return to the data of Table 2-2 for the fuze burning times, and use all 30 readings of the first and third
instruments (I; and I;) to obtain simultaneous 95% confidence bounds on the standard deviations of
product variability and the two imprecisions of measurement, Le., 0x, ¢, and o,

We calculate

§2=0.04714  S2=0.04561 S, = 0.04593

and note that esto, = 1/0.04593 = 0.214, esto, = \/0.04714 — 0.04593 = 0.0347, but esto., <0, and hence
we must take esto., = 0 here also.

By substituting the calculated variances, the covariance, and the K and M of Table 2-6 for 2a = 0.05
into Egs. 2-82, 2-83, and 2-84, we obtain with 95% confidence that simultaneously

0.16 < oy <0.32
0.00 < 0., < 0.09
0.00 < a., < 0.07.

(All negative lower bounds must be replaced by zero.)

Finally, for the two-instrument case, confidence bounds on the ratio o.,/g. are obtainable as a result of
the work by Shukla (Ref. 14). In fact, as shown by Shukla (Ref. 14), confidence bounds on the unknown
ratio o.,/0., = k of population imprecisions may be found with the aid of Eqs. 2-70 and 2-71. Thus from
Eq. 2-71 and for given upper and lower & probability levels for Student’s 7, corresponding bounds for r.,
may be determined. Then by using Eq. 2-70, the solution of a quadratic equation will give (I — 2a)
confidence bounds for k°, from which the confidence bounds for k = ¢¢,/ 0. may be obtained by taking
square roots, as indicated by Eqgs. 2-90 and 2-91.
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TABLE 2-6

VALUES OF K AND M WHICH YIELD .
(1 — 2a) CONFIDENCE REGIONS WHEN USED IN
CONJUNCTION WITH EQUATIONS 2-83 THROUGH 2-85 (Ref. 3)

n—1 2a = 0.01 2a = 0.05
K M K M
3 99.78 99.72 19.79 19.71
4 12.38 12.33 4.146 4.077
5 3.980 3.931 1.726 1.665
6 1.903 1.858 0.9636 0.9083
7 1.120 1.078 0.6290 0.5786
8 0.7459 0.7076 0.4516 0.4052
9 0.5389 0.5031 0.3453 0.3022
10 0.4120 0.3782 0.2761 0.2357
11 0.3282 0.2963 0.2280 0.1901
12 0.2698 0.2395 0.1932 0.1573
13 0.2272 0.1983 0.1668 0.1328
14 0.1951 0.1675 0.1464 0.1140
15 0.1702 0.1438 0.1301 0.09925
16 0.1505 0.1251 0.1169 0.08738
17 0.1344 0.1100 0.1060 0.07767
18 0.1213 0.09772 0.09682 0.06962
19 0.1103 0.08752 0.08904 0.06287
20 0.1009 0.07896 0.08237 0.05713
22 0.08610 0.06546 0.07152 0.04795
24 0.07484 0.05538 0.06311 0.04098
26 0.06605 0.04763 0.05641 0.03554
28 0.05901 0.04152 0.05096 0.03121
30 0.05328 0.03660 0.04644 0.02768
35 0.04272 0.02778 0.03796 0.02127
40 0.03556 0.02200 0.03205 0.01700
45 0.03040 0.01797 0.02771 0.01398
50 0.02652 0.01503 0.02440 0.01176
60 0.02109 0.01110 0.01967 0.00875
70 0.01748 0.00862 0.01646 0.00684
80 0.01492 0.00694 0.01415 0.00553
90 0.01300 0.00575 0.01241 0.00460
100 0.01152 0.00486 0.01104 0.00390
Reprinted with permission. Copyright © by American Statistical Association.
If we let
F=S8i—8; (2-86)
G=S8—S: (2-87)
H=1}(88:— Sk)/(n—2) (2-88)
where

o = upper « probability level of Student’s ¢
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then Shukla (Ref. 14) has shown that the (1 — 2a) confidence bounds on o.,/ o, are

. Pr[Dy < 0,/0e, < Dy} = 1 — 20 (2-89)

h
. D.=[(G— H)/(F+~H)]" (2-90)
Dy =[(G+ VH]/[F—~HN". (2-91)

Due to the possible existence of a negative F or G, especially for small sample sizes, the lower bound may
have to be taken as zero, and the upper bound considered not calculable unless F > \/ H.

2-8.5 CONFIDENCE BOUNDS ON PRECISION PARAMETERS FOR THREE
INSTRUMENTS

2-8.5.1 Confidence Bounds on 033/[(03_1 + 032)/2]

When dealing with the data from three instruments, we can expect to obtain somewhat narrower confi-
dence bounds on the unknown precision parameters than we can for only two instruments. In addition, it
seems highly desirable in practice to compare one of the instruments to the other two. In fact, it will be
most desirable, or even sometimes mandatory, to have access to at least two reference or standard instru-
ments. We may then compare, as in par. 2-7.4, or place confidence bounds on the ratio of the precision of
measurement of the “test” instrument with the average of the other two (reference) instruments. By refer-
ring to Eq. 2-78, for which we may select an upper and/or lower probability level for , and with the
sample data substituted therein, it can be seen that we may solve a quadratic equation in terms of the
unknown parameter \/v from which upper and/or lower confidence bounds on v are determined. Finally,
since

v=oa:/ai= [0, + (i, + 02,)/4]/ (¢, + o2) (2-92)

oe,/[(0l, + 02)/2] = 20 — Y5 (2-93)

or

confidence bounds may be obtained for the LHS of Eq. 2-93, which is our goal. This will usually be done
numerically as required on the part of the user.

72-8.5.2 Simultaneous Confidence Bounds On All Unknown Precision Parameters

Simultaneous confidence bounds on all of the precision parameters Oc)s Ocys Ocy and o, for the three-
instrument case are available from multivariate statistical theory, as was the case in par. 2-8.4 for only two
measuring instruments. In fact, the subject confidence bounds depend on percentage points (probability
levels) of the extreme roots of a Wishart (multivariate) matrix as developed and calculated by Hanumara
and Thompson (Ref. 17). As indicated by Hanumara and Thompson (Ref. 17), some of their work was

, stimulated by the original, practical problems of estimation of precision developed in Ref. 2. Fortunately,
percentage points of the extreme roots of the pertinent Wishart matrix for cases involving 2, 3,4, 5,6, 7, 8,
9, and 10 instruments have been calculated by Hanumara and Thompson and are available in their Table 1
of Ref. 17. The sample sizes covered for three instruments are

n = 3(1)10(5)30(10)100

and the upper (1) and lower (£) percentage points include probability levels of 0.005, 0.010, 0.025, and
0.050.

To indicate how computations of confidence bounds will be carried out, we need to express convenient
multivariate notation. For any general number N = 3 of instruments, define the covariance of the n
readings of any instruments j and k as
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Sy = ,Z:,(’*'f =T ra = F0)/(n — 1) (2-94)

where
ry = ithreading of instrumentj = 1,2, ... N .

ri = ith reading of instrument k = 1,2, ..., N
r.; = sample mean of the readings of instrument j
T.x = sample mean of the readings of instrument k.

(We note with this notation that the sample variance of readings of the jth instrument is S;.) Using the
preceding notation, Hanumara and Thompson (Ref. 17) show that for N > 2 instruments the probability
is at least (1 — 2a) that the following confidence bounds obtain:

1 max (=D S (LT +u™) — (= 1) (£ =) (S50

2 j#k
<ois
Iy - - L .
) ?_22 [(r=D S (L +u+ =D —u) (SiS0)"] (2-95)
J
and
1 - _ X -
2 R = DS =S U =) == 1) (¢ =[S0 (S + S5 — 28] .
= 031 =
‘;‘-r;if =D =SHU =uy+ (=D (L —u")[Su (Su+ 85— 25)]" (2-96)
J
plus similar incqualities for o7, o?,, . .., o? .

N
With n = 12, the data of Table 24 (or Table 2-5), and approximately interpolated lower (£) and upper
(v) @ = 0.025% points from Table 1 of Ref. 17, ie.,

4 =201 and u ~ 31.5,
the simultaneous 95% confidence bounds on the parameters are found to be

0.77< 0, <3.57m/s 0.00<0.,<1.22m/s
0.00 <0, <092 0.00 = 0., = 1.98.

Note how seemingly wide the 95% confidence bounds on the imprecisions of measurement appear to be
for n = 12 rounds only.

2-8.5.3 Duplicate Measurements With One of Two Instruments and Allied Results

A very interesting and special case occurs if the readings or measurements of I, say, are replaced by .
duplicate determinations with instrument I,. In other words, there are only two instruments really, with
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one of them taking duplicate measurements. This is the case studied by Hahn and Nelson (Ref. 18), and it
is readily seen that ¢, = o., = o.. Moreover, the quantity

SHSi=Fn—1,n—10,=0.) (2-97)

follows the Snedecor-Fisher F distribution with (n — 1) and (n — 1) df as indicated in Ref. 12. In addition,
it is easy to establish that the lower and upper (I — 2a) confidence bounds on o,/ 0. are, respectively,

(282 /[(Fia(n—1,n — )82} — 1/2 (2-98)
and

[282Fia(n—1,n—1)]/S3—1/2. (2-99)

We would especially recommend the continual acquisition of data on as seany instruments as possible
and the eventual accumulation of enough information to establish the pretision parameters o, and the
biases S, or relative differences (8 — B), etc., as accurately as possible. With such determination of stable
estimates, one may make a valid selection of the more precise instruments for reference purposes or
standards. In addition, there seems to be some advantage in selecting #t least twe instruments with small
and equal imprecisions, e.g., 0., = de, = 0, say. In such a situation, if ®e refer to the measurements [, and
I, and consider their difference u = r — s along with the quantity

z=—(—0/2+@—r/2=t—(r+¢)/2 (2-100)
then
482/3S)=Fn—1,n—1) (2-101)

if 0., = 0., = o.. That is to say, the quantity 452/(3S2) follows the Snedecor-Fisher F distribution with
(n — 1) and (n — 1) df. Hence we calculate the observed or sample value F, *

Fo = 4S2/3S} (2-102)

and refer it to the table of percentage points of F, concluding that o, < 8., ®, = 04, 0r 0., > 0., depending
on whether F, fell below the lower percentage point of F, or F, fell bétween the lower and upper percen-
tage points of F, or F, fell above the upper percentage point of F, respectively.

For the case where o, # o0.,, but they are known accurately, see Ref. 12, p. 65, for significance tests and
confidence bounds.

2-8.5.4 Shukla’s Three-Instrument Bounds for o.,/ o,

Shukla (Ref. 15), apparently motivated by the paper of Hahn and Nefon (Ref. 18), who used one
instrument twice, generalized their theory and extended the work of Grfbbe ip Ref. 12. Thus Shukla (Ref.
15) regarded the Hahn and Nelson (Ref. 18) approach as a special case of three fdependent instrument
measurements (as does Grubbs in Refs. 2 and 12) and proceeds as follows. In fact, Shukla (Ref. 15) defines
and uses

Ui =ri—Si (2-103)
Vi=si— (2-104)
8 = o%,/ o, (= our 1/k?) (2-105)
P=tio/(tiatn—2) (2-106)
*If 033 = o7, the quantity v of Eq. 2-92 equals 3/4.
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A=rh\—P (2-107)
B=2[(ri,— P) + (1 — P)Sw/S}] (2-108)
C=ri,— P+ (1= P)[(S2/S) + (25w )] (2-109)

where
l1-« = upper «a probability level of Student’s 7 of  and v
Suv = sample covariance of u and v
S, = sample variance of v =5 —
Si= sample variance of u =r — s.

With these defined quantities, Shukla (Ref. 15) then points out that the (1 — 2a) confidence bounds on
6= oil/oiz are determined from

Prior<é6<6y]=1—2a (2-110)
where the lower 8, and upper 8y confidence bounds are found from
[81, 6] = [—B % (B> — 44C)"*]/ (2A4). (2-111)

Apparently, Shukla’s confidence bounds given by Eq. 2-111 are much narrower than those of Hahn and
Nelson (Ref. 18) as demonstrated by Shukla with the Hahn and Nelson sample data.

Of course, an obvious rotation of the subscripts will give confidence bounds on a¢,/o%, and a:,/o%,.

Actually, the basic models described herein are of much more general use than might appear at first.
Readers will, in general, have much familiarity with least squares and regression (Chapter 6) and thus will
perhaps have experienced the analysis of residuals about a fitted curve. There may be some relation
between standard error of residuals and our imprecision of measurement sigma. Moreover, if several
instruments are used to take the same basic physical data and their residuals properly “paired”, the tech-
niques of this chapter may still apply. Thus once a satisfactory model or curve has been fitted, an analysis
of the imprecision and inaccuracy of measurement can be made on the “residuals” or “errors of
measurement”.

We will illustrate Shukla’s three-instrument method (Ref. 15) for I, and I; of Table 2-4. We “advance

the subscripts” and calculate
$:=02711,  8$:=0.2252, r,,=—0.8847, S, =—0.2186
P =10.3317 from Eq. 2-106 « = 0.025; and 4 = 0.4510, B= —0.3954,
C = —0.0419 from Egs. 2-107, 2-108, and 2-109, respectively.

Finally, from Eq. 2-111
8 = —0.0956, &y =0.97.

Hence
Pri0<o:,/0?, < 0.97] = Pr[0 < Oc,/ 0e, < 0.98] = 0.95.

(Had we calculated lower and upper 95% confidence bounds on aﬁlfoiz using Shukla’s method, both
bounds would have been negative, due perhaps to o§3!)

29 MEASUREMENTS WITH A GENERAL NUMBER N = 3 OF INSTRUMENTS

The separation of product variability and instrumental imprecision for any general number of measur-
ing instruments was investigated in 1948 by Grubbs (Ref. 2) and later in 1964 by Jaech (Ref. 19). We will
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define e;; as before to be the random error of measurement for the ith reading by the jth instrument (j =
3,4, ..., N), which measures the true unknown quantities x; (| = 1, 2, . . . , n), which may vary randomly
or even be constant. If we use the notation of Ref. 2 where

S, = sample variance in readings of the jth instrument I;

Sxrej xvey = sample covariance of the sum of readings of instruments I; and I«

2 . ] : ; .
Se-¢, = sample variance of the difference in readings of instruments I; and I,

the best estimate of the variance of errors of measurement of the first instrument I, for N = 3 is

X ] 2 N 2 k=N
estoel = Sx+el = 2 Sx+e1, xte: + Z Sx+e-, x+ey,
N— 1)i= 7T TN — 1) (N — 2) fesien ™

LI By SO ML 2-112
By /=2S61—ej N—2) i<k " TH @)

The variance of the estimate given by Eq. 2-112 for normally distributed errors is

2 1 | 4 N |P 4 ] k=N
Ay 4 A3 9 2y 2
Vartestos) = <n - 1>°e1 i <n = 1> LN— 1)2:] RGO T T ML
(2-113)

Formulas for estimates of 032, 033, C. 03N and the variances of these estimates may be found by
rotation of the subscripts. In fact, one may merely designate the instrument he is interested in or working
with as I, and use Egs. 2-112 and 2-113 repeatedly until all instruments are covered.

The estimate of product variance of N = 3 instruments is the average of all of the sample covariances or

5 2 k=N
estoy = W—_l) 15%<k Sx+gj, xtep (2-1 14)
i— fx+ fegtt "+ ep)/N — —]\72-(”—:——1-)— lS}Z<k Sej—ek
where the subscript [x + (e, + - - - + en)/ N] means the average of the readings of all N instruments for the

ith (and other) items(s).
The variance of the product variability estimate (Eq. 2-114) for normally distributed variables is

2 ] 4 n 4 k=N
Var(esto?l) = 2 \ \ Z 2 PN 2-115
o <n—1>0 +<n—1/ <N2/ % 2 0qF N (N = 1)? x99 %% (1)

In 1964 Jaech (Ref. 19) studied a measurement error model for the case where readings of N instru-
ments are recorded on » items but where also r; “runs” are made on instrument I[; (j = 1, 2, ..., N). Since
the total number of data points is then nR, where
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N
R= 5 1 (2-116)

some particular “unscrambling” of the measurement errors is clearly necessary.
The model considered by Jaech (Ref. 19) is linear, with constants a; and Bx to be determined and
quantities e; representing the random error of measurement on the ith item and kth run, and is given by

rik = o + Bix; + ex (2-117)
where
ric = observed value or reading on ith item for “run” k
i =1,2,..., n(refers to ith item)
k =1,2,... R(R = total number of readings)
X; = true value of ith item measured.

In Jaech’s model the parameters a; and Bk are “joint” measures of instrument bias for “run” k. In fact, if
ox = 0 and B« = I, no bias exists, but if B =1, and ax # 0, there is a constant bias for the instrument on
run, and the bias is independent of the magnitude of the measured item. Moreover, the possibility that
B # 1 is not often considered in most applications. All unknown parameters in the model can be esti-
mated by using sample covariances S and variances S%, as shown in Ref. 19, and are

- R
Be = <,-;£Ik Si/ Su>”‘“’ ko #1 (2-118)
- R
ol = kgz S1S1q/ Sig Y ED (R-2) (2-119)
k<g
ok =S} —o? (2-120)
0% = SE— fro  k#1 (2-121)
a =Tr— Bir1, k1 (2-122)
Mx =T (estimate of mean x) (2-123)
where
= estimate of quantity under the "
T« = mean of readings on kth “run”
71 = mean of readings on run 1.

As indicated in Jaech’s paper (Ref. 19), the “run” designated as 1 is chosen as the base run, and therefore,
for example,

,B‘;\( actually estimates 8/ 8,
and
oy actually estimates ax — Bra/ Bi.

The relative biases between runs are independent of the base chosen although the estimate u} of the mean
product value and the estimate o2 of product variance do depend on the base run, but normally they are
only of interest in solving for estimates of the other parameters, i.e., the imprecisions.

Jaech (Ref. 19) also gives expressions for variances and covariances of the estimators and methods of
comparison including an analysis of variance. In another paper Jaech (Ref. 20) extends this research
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investigation to develop large sample tests of various hypotheses on instrumental precision for more than
two instruments. It is evident that there should be many applications for the models studied by Jaech.

A computer program for estimating precision of measurement in accordance with the models of Ref. 2
or Egs. 2-112 through 2-115 for any number of instruments has been written, thoroughly checked, and
applied to various problems by O’Bryon (Ref. 21).

2-10  INTERLABORATORY TESTING FOR PRECISION AND ACCURACY STUDIES

One of the very important, practical, current, and ever-continuing problems in studies of precision and
accuracy of measurement is that of interlaboratory testing. In this connection, it has become common
practice to send “standard” or “reference” material to a number of laboratories for testing in order that
analyses of the goodness of laboratory measurements can be established. Also it is desired to “bring the
different laboratories into line” by providing calibrations. The standard or reference material tested at a
number of laboratories is selected to be of consistent quality, very small variation if possible, or otherwise
“homogeneous”. In this way, the differences arising during the “round-robin” tests of the material at the
different laboratories will reflect primarily, or hopefully, the differences in errors of measurement among
the testers. However, there is bound to be some variation in the material tested that is not ordinarily
stripped out of the laboratory instrument readings, as we have done previously in the chapter, to get at an
analysis of only the errors of measurement. In addition, one has to be on guard in interlaboratory testing
for “outliers”, which nearly always arise because there may have to be some treatment or elimination of
spurious readings or observations.

The precision of measurement at one (a single) laboratory will ordinarily be measured in terms of the
standard deviation or variance in errors of measurement and is widely referred to as the “repeatability”
sigma or value. Some will contend that repeatability should be measured in terms of a single operator on a
single piece of measuring equipment at a single laboratory. We will avoid such arguments because it
becomes most natural to identify, take into account, and estimate all of the components of variation that
might arise in any particular problem facing the analyst or statistician.

The variation among the true levels or large sample average readings of the laboratories at which the
round-robin procedure is conducted, when compared with the repeatability, is rather widely referred to as
the “reproducibility” sigma or value. The reproducibility sigma involves not only the variation among true
(or large sample) averages of the readings at each laboratory but also depends on the repeatability sigma
of a laboratory — and, indeed, the number of measurements taken at a laboratory! In our example that
follows we will make specific calculations and precise estimates of the components of variance involved
and will illustrate the procedure in all necessary detail.

Although it is now often customary to include a fairly large number of laboratories (even 30 or 40) in a
round-robin test, we will illustrate the problem for only seven laboratories since this will suffice for making
our primary points.

Our illustration of the problem of interlaboratory testing consists of the determination by each of seven
laboratories of the amount of lead in standard samples of gasoline. The particular samples of gasoline
made up for the purpose of interlaboratory testing contained precisely 0.029 g/ gal., and either two or three
measurements or determinations (duplicate or triplicate) were recorded at each of the seven laboratories in
the round-robin procedure. The data, taken from Ref. 22, on the measurements of the amount of lead in
standard gasoline samples are given on Table 2-7, where the determined amounts of lead have been multi-
plied by 1000 for convenience of analysis.

There are a total of N = 17 measurements for all seven laboratories, and we define the following
symbols for our use here:

x; = element (determined amount of lead in gasoline X 1000) or observation in the ith
row and jth column of Table 2-7

2x = X3x; = sum of all the observations in Table 2-7

Sx*= 3Zx} = sum of squares (SS) of all the observations in Table 2-7
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(2x)’/ N = Table 2-7 total squared divided by N = the “correction term”

n; = number of observations in the jth column = 2 or 3 for Table 2-7

k = number of laboratories participating = 7

o, = repeatability sigma, or standard deviation, within laboratories

o, = standard deviation among true laboratory means or levels, or “external” sigma
or=+olt o= reproducibility sigma for a single observation at a laboratory.  (2-124)

The reader with some statistical background will recognize the data of Table 2-7 as a standard one-way
classification in the analysis of variance (ANOVA) with an unequal number of observations per cell. The
method of statistical analysis is given directly in Tables 2-7 and 2-8 and may be found in many standard
textbooks on statistics.

Since there are unequal numbers of observations per cell in Table 2-7, some care must be exercised in
estimating the components of variance, as we will see.

The numerical ANOVA is summarized in Table 2-8. There are a total of 16 df, with 10 for the residual
or repeatability variance o;, and the remaining 6 df are equal to one less than the number 7 of
laboratories.

TABLE 2-7

ONE-WAY ANOVA CLASSIFICATION FOR LEAD IN GASOLINE
(0.029 LEVEL; VALUES MULTIPLIED BY 1000)

DuPont Mobil EPA Ethyl Amoco Ford Octel
23 24 25 26 28 27 28
24 24 26 26 27 27 28

23 el 26 e w 26 e
70 48 77 52 55 80 56

N =17, x; = element in ith row and jth column
Sx=33x5=234+24-+23+24+24+ -+ 28+ 28 =438
Sx?=35xh =23+ 247+ (23)* + (24> + (24)* + - - - + (28)* + (28)* = 11,330
(3x)?/N = (438)%/17 = 11,284.94
Total SS (about grand mean) = 3x* — (x)*/ N = 11,300 — 11,284.94 = 45.06

SS among column (Lab) means = (70)*/3 + (48)*/2 + (77)*/3 + - - - + (56)*/2 — 11, 284.94
= 11,327.50 — 11,284.94 = 42.56

SS for repeatability within Labs= 45.06 — 42.56 = 2.50. .

Copyright, American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103. Reprinted with permission.
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TABLE 2-8
ANOVA TABLE

Source Sum
of of df Variance
Variation Squares
Total 45.06 16
Among Labs  42.50 6 7.093 = g} + 2.41 of
Within Labs 2.50 10 0.25=o0>

2.41 = (N* — 3% /[N(k — 1)], 0, = 0.50, 0, = 1.69, and ar = \/oi + 07 = 1.76

Copyright, American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103. Reprinted with permission.

The residual or repeatability variance o?is rather small; the estimate of it is
02=2.50/10=0.25 orag, =0.5

which converts to only 0.5/1000 = 0.0005 in g/gal. of lead.
Note that the variation among laboratory true levels of measurement is quite large and highly significant
with

F=7.093/0.25 = 28.4

whereas Fogs (6,10) is only 5.36. We must conclude, therefore, that the component of variance among
laboratory measurement levels is rather large and deserves investigation to “bring the laboratories into
line” by providing calibration corrections.

To estimate the component of variance among laboratory true levels of measurement, we must equate

A N2 - an A A A
o4+ |l—— ot =024 2.410 =7.093 (2-125)
Nk — 1)

from which we obtain

0?=12.84 or dr=1.69 (0.00169 g/gal.).
Finally, the reproducibility variance oz for n measurements at a laboratory taken at random would be
ok = oi + or/n=12.84+0.25/n. (2-126)

For the average result of k laboratories, Eq. 2-126 would be divided by k, the number of laboratories.

We will not discuss “outlying” laboratories in this chapter since “outliers” are covered in Chapter 3. Our
prime interest is to show how the analysis should be conducted without rejecting any laboratory results at
this stage.

With reference to the interlaboratory test one notes that each and every measurement of the amount of
Jead in gasoline is consistently lower than the actual amount, i.e., 0.029 g/gal.; thus all laboratories show
low readings. Some calibration is necessary, especially after some investigation to determine the possible
cause of the consistently low measurements. In fact, by examining Table 2-9, we see that DuPont and
Octel differ by 28.0 — 23.3 = 4.7, which is 4.7/1.76 = 2.7 times the reproducibility sigma of a single
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TABLE 2-9
AVERAGE LEVELS OF THE DIFFERENT LABORATORIES

DuPont Mobil EPA Ethyl Amoco Ford Octel

23.3* 24.0* 25.7 26.0 27.5 26.7 28.0

*The levels of measurement at DuPont and Mobil appear significantly lower than the other laboratories.

measurement! Apparently, there is no problem concerning the within-laboratory or repeatability sigma of
0.50, but the laboratories urgently need bringing into line by calibration for average readings.

Finally, we caution again that in this type of interlaboratory analysis of a test program, we are not
necessarily dealing strictly with the errors of measurement to determine precision and accuracy as pre-
viously stripped out as components in this chapter. We say this, even though in this particular round-robin
test there may be little, if any, variation due to the product, i.e., amount of lead. It can often be expected,
nevertheless, that some product variation may still be present in ordinary interlaboratory testing even
though it would be highly desirable to deal only with errors of measurement for precision and accuracy
studies of a test method as we have presented and recommended predominantly.

The reader should note in particular that the interlaboratory test and the multi-instrument cases dis-
cussed heretofore can sometimes, and often should, be treated as the same analytical procedure. In fact,
the multi-instrument analysis seems more general,

2-11 THE HIERARCHY OF CALIBRATIONS AND THE ACCUMULATION OF ERROR

As the final major topic to be highlighted in this chapter, we believe it pertinent to discuss the problem
of calibration of instruments up through the various calibration echelons to the prime reference standards
at the National Bureau of Standards and also to discuss the accumulation of error throughout the chain.
We have seen that both precision and accuracy are very important or mandatory, that instrumental preci-
sion is required to detect bias or systematic error, and that bias or improper levels of measurement may be
corrected by good calibration or bias correction procedures.

Crow (Ref. 23) gives a brief account of the background of the calibration process, which will suffice for
our needs in this chapter. We quote Crow (Ref. 23).

“Since the art of measurement began there have been standards, more or less informal, by means of
which further measuring sticks, weights, and capacity measures have been produced for use in construction
and commerce. With each reproduction of the measures variations were inevitably introduced, and these
often consisted of intentional as well as accidental errors. The ancient Egyptians, Greeks, and Romans had
respected standards of measure, but these fell out of use during the Dark Ages, and the later attempts to
establish widely used standards were long doomed to failure.

“In 1830 the United States Senate noted that variations in the standards in use at various customhouses
were causing loss of revenue and directed the Secretary of the Treasury to make comparisons of these
standards. The Treasury in fact took steps to supply uniform weights and measures to all customhouses,
and the Secretary reported in 1832 that standards were being fabricated at the United States Arsenal in
Washington ‘with all the exactness that the present advanced state of science and the arts will afford’. Thus
the Office of Weights and Measures came to be established in the late 1830’s within the Treasury Depart-
ment. In 1901, when its budget was still less than $10,000, the Office became a part of the new National
Bureau of Standards. In 1903 the Bureau was transferred to its present position in the Department of
Commerce.

“Now the Bureau maintains hundreds of national standards and calibrates the standards of the states,
military departments, manufacturers, utilities, universities, private testing companies, and others. The
Bureau is unable to calibrate all secondary standards and instruments, and the above types of organiza-
tions in turn calibrate further standards. For example, counties and cities may have their balances,
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weights, and other measures certified by their state offices, and they in turn certify the balances within
their jurisdictions.

“In electrical energy the Bureau uses a standard watthour meter accurate to about 0.03 percent to
calibrate the master standards of public utility commissions and power companies. The latter in turn make
measurements to about 0.1 percent of customers’ meters. As a result in part of variability in time, custo-
mers’ meters operate within about one percent accuracy.

“In recent years the demanding requirements of missiles, spacecraft, and other vehicles have led to the
establishment of extensive hierarchies of standards laboratories by the military departments. As indicated
in Fig. 1 [our Fig. 2-1], the National Bureau of Standards is at the apex of these hierarchies. The figure
indicates just a few examples of the standards laboratories that enter in various levels, or echelons, of the
hierarchy. For most basic standards the Bureau is itself just one of the many national laboratories deriving
their units from the International Bureau of Weights and Measures. In each echelon of the hierarchy and
with each transfer of information, some error is unavoidably introduced.”

With this coverage of the calibration process, let us take a brief look at the need for precision of
measurement for each level at which the instrument may be calibrated and used for measurement purposes
along with the accumulation of error in the instrument comparison process. We will number the echelons
at which calibrations may occur with the numbers 1, 2, . . ., m, where the first level or 1 refers to the
National Bureau of Standards, 2 the second level, and so on down to the final laboratory or “bench” level
m where measurements are taken on some item. Then at each and every level or echelon an error in
calibration may be committed, or that is, we may say that the error committed at level i is e;. Hence if the
calibrations at the different echelons are statistically independent, as we would expect, the total variance o7
of the errors down to the mth level is
o: = mo:

2 .
ar —
1 1

i

13

(2-127)

if the same standard error o. of measurement is made at each level. It might be expected, however, that
precision of measurement should improve as the numbered level decreases, i.e., 5,4, 3, 2, and 1. Thus the
number m of levels may be of some importance although the relative precision in measuring product
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Reprinted with permission. Copyright © by American Society for Quality Control.

Figure 2-1. Schematic Representation of Hierarchies of Military Standards Laboratories Using National Bureau
Standards Calibration Services (Ref. 23)

2-47



DARCOM-P 706-103

variability is of considerably more importance. In fact, to demonstrate this, recall that actual measure-
ments will be made at the mth or last level, so that with the hope that no confusion will arise, one may
take

om+1 = Ox, Wwhen i becomes m, (2-128)

Le., the (m + 1) st sigma is the actual product standard deviation measured. What is important then is
really the precision ratio r; (often misnamed the accuracy ratio)

ri = ox/ o, (2-129)

at each level, and the accumulated variance (Eq. 2-127) at level m.

The accumulation of calibration error or variance of the errors throughout the hierarchy of calibration
echelons has been studied very thoroughly by Woods and Zehna (Ref. 24) and particularly also in cost or
economic detail by E. Crow (Ref. 23).

It seems reasonable to define the resultant or total precision or accuracy ratio rr, say, as

13

o (2-130)

ri= of/‘

i=1

where total accumulation of variances in errors of measurement are accounted for and included. If at each
stage i the relative precision ratio is constant, i.e.,

ri= 0x/0e;=¢C (2-131)

Woods and Zehna (Ref. 24) have shown that the final or total precision ratio (Eq. 2-130) is simply

2 2m
¢ — e
=l = D - (2-132)
=]
As the number m of echelons of calibration increases without limit, 7approaches
limri=c*— 1. (2-133)
m — oo
Thus always
2 2
rr=c"— 1 (2-134)
and rrnever falls below
rr=~c"—1 (2-135)

which is a very enlightening result indeed! Hence as a numerical example, if we require
ri= ox/0.= 10
the total precision or accuracy ratio does not fall below
rr=+/(10)"—1=19.95!
Crow (Ref. 23) shows that if at each calibration stage

0=
2.48 oA Che
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for a large number of calibration echelons, the relative total precision o7/ o, will not increase by more than
about 15%. Thus as m—oe, it is only when ow1/0; becomes less than 2 that one should expect any very
significant or intolerable accumulation of relative total calibration error precision o7/ om.*

Crow (Ref. 23) conducts a very fine study of the optimum allocation of calibration errors based on total
system cost of achieving a given or desired accuracy. He considers costs to be of two types: (1) the cost of
research and development (R&D) that needs to be done only once or not at all if the measurement system
has already been developed, and (2) the costs of installation and operation for each laboratory. Crow (Ref.
23) then assumes that both types of costs decrease in a negative exponential manner with increasing size of
the error E committed in a laboratory, i.e.,

R&D cost =~ boE ™ (2-136)
and il
Installation and Operation Cost = b1 E™“! (2-137)

where all constants are positive and
ao, bo, a1, by = fitted constants with ao = a1.

By using the method of Lagrange Multipliers to minimize total costs, Crow (Ref. 23) finds that the
optimum precision error ratio between the ith and (i + 1)st stage of the calibration echelons is given by

oinr]0i = (M) " (2-138)
where
mi1 = number laboratories at stage i + 1

and 0 < a < a1, and a = a if research and development is unnecessary. Hence the exponent value a
becomes equal to a;, or the exponent of the installation and operating cost curve, if no R&D is required
for the instrumentation.

7-12 ADDITIONAL DISCUSSION OF FUNDAMENTALS OF MEASUREMENT

The American Society for Testing and Materials (ASTM) has published (1977) a compendium of stan-
dards on precision and accuracy (Ref. 26). It is referred to as their “Green book” and may be of some
interest to readers especially concerning just how precision and accuracy problems are now handled in
much industrial work or practice. ASTM also has a standard recommended practice, designated E 177-71,
entitled Use of the Terms Precision and Accuracy as Applied to Measurements of a Property of a Mate-
rial, which may be found in the “Green book” (Ref. 26), pp. 124-41.

As indicated earlier in the chapter, a rather informative and thorough discussion of the precision and
accuracy problem in many areas of the physical sciences is covered in Ref. 1. Also concerning the precision
and accuracy of the fundamental constants in physics and the needed adjustment of them, the reader is
referred to Eisenhart (Ref. 27) in addition to the many papers in Ref. 1.

Pontius discusses the fundamentals of measurement and the consideration of measurement as a produc-
tion process in Ref. 28.

Cameron (Ref. 29) discusses the general problem of measurement assurance, and DeVoe (Ref. 30) exam-
ines the area of validation of the measurement process.

Mandel (Ref. 31) discusses the measurement process, especially in terms of interlaboratory testing.

The Engineering Design Handbooks (Refs. 32, 33, 34, 35, and 36) on experimental statistics constitute a
very useful background of statistical knowledge for the reader concerning this chapter and also the other
chapters of this handbook.

Finally, we comment on some very recent accomplishments concerning the three-instrument case, which
should have wide applications. As is evident from Eq. 4-2, the models represented by Eq. 2-15 and Eq.

*The effect of calibration on end-item performance in echelon systems is discussed and modeled in Hilliard and Miller (Ref. 25).
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6A-1 of the Appendix 6A, the estimation techniques for the imprecision of measurement are very closely
tied in with the two-way ANOVA concept. Indeed, in a private communication Professor Ralph Bradley
and Dennis Brindley (1980) of Florida State University indicate some very striking results for the three-
instrument (j = 3) case. They use r;;, which we have designated in this chapter to be the ith reading of the
Jjth instrument, to mean the element of a two-way classification of the ith row and jth column. Thus as in
the analysis of variance modeling, the sum of the instrumental biases B; can be taken to be zero (but are
still representative) and the variance Var(e;) = oﬁj. Then, upon taking

S = él(rg —F — T+ T.) (2-139)

where the dots simply denote summing on that particular subscript and the bars average values, and using
the quantities

Qi =kSj/l(n—1) (k —2)] —Elej/[(n — Dk —1)(k—2)] (2-140)

one finds for k = the number of columns (instruments in this chapter) that the expected value of Q; is
E(Q)= o (2-141)
our imprecision variance of measurement for the jth instrument, or here the residual variance in the jth
column when row and column level effects have been eliminated, leaving “measurement errors”. For the

case k = 3, Brindley and Bradley indicate they have found the joint probability density of the Q\, 0., and
Qs and have established the likelihood ratio test of the null hypothesis

Ho: 07, = 0;,= 0;,= 0, (2-142)
versus the alternative hypothesis
H,: Some o¢, % a¢ , j # q. (2-143)
The likelihood ratio statistic for testing Hy is
A=3(QiQ:+ Q10 + 0:03)/(Q1 + @ + Q) (2-144)
and under H, the probability density of A is simply
n— 2\ o
SN =|—]A ,0=SAS1 (2-145)
2

so that any « probability level of A, or A, will be given by
A= (@) (2-146)

Brindley and Bradley have also established the power function of the test of H, for the case of k = 3
instruments.

2-13 SUMMARY

We have defined errors of measurement and the terms precision and accuracy of measurement in rather
extensive and analytical detail, approaching the problem primarily from the practical point of view of
requirements. Methods and techniques for estimating precision and accuracy of measurement for various
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numbers of instruments used in the process are thoroughly covered along with statistical tests of signifi-
cance on the parameters of imprecision and inaccuracy, and confidence bounds as well. Related work of
many authors on the problem of precision and accuracy is discussed, and references to industrial practice
are given. Finally, we present an account of the hierarchy of calibrations for instruments and indicate
precision requirements for each echelon of laboratory calibrations.

Many examples concerning applications of the currently available theory of precision and accuracy are
presented throughout to orient the reader as well as possible.

The methods of this chapter are especially recommended to accumulate data on precision, accuracy or
bias, and calibration corrections for all instruments in order that instrumental capabilities will be docu-
mented and appropriate selections of the best or standard reference instruments can be made as needed in
the overall measurement process.
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CHAPTER 3
PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS

Statistical principles for screening observational data to detect irregular or outlying observations are dis-
cussed in appropriate detail and illustrated by examples. The best tests that have been found to be extensively
used in practice are covered for the problem of detecting single or multiple outliers in samples. The principal
tests include those for detecting whether the highest or the lowest observations are outliers, or the two highest
or the two lowest, or the highest and lowest observations jointly come from different populations with shifted
means or a change in the dispersion parameter. Moreover, the principles are extended to the problein of de-

tecting more than two or many outliers in data, and the relation of outlier detection to tests of normality is
presented.

3-0 LIST OF SYMBOLS
a= .nkEklx,-,’ (n — 2k) = trimmed mean of Rosner
an-»1 = coefficient of the Wilk-Shapiro statistic
B* = Hawkins and Perold’s studentized maximum statistic of Egs. 3-62 and 3-63
b* = Rosner’s trimmed variance in Eq. 3-49
by = sample skewness coefficient of Eq. 3-56
b, = sample kurtosis coefficient of Eq. 3-57
d = maximum studentized statistic of Halperin, Greenhouse, Cornfield, and Zalokar in Eq. 3-61
E() = expected or mean value of quantity in parentheses
Ex = Tietjen-Moore ratio statistic given by Eq. 3-44
Ev= (Si+ U)/(S* + U) = Hawkins’ outlier test statistic of Eq. 3-55
= F( ) = cumulative distribution function
() = probability density function of quantity in parentheses
Hy = null hypothesis
k = number of “outliers” in Tietjen-Moore tests
L = bound or limit
L, = Tietjen-Moore ratio statistic given by Eq. 3-46
max| | = maximum value of quantity inside | |
N = total number of items in a finite population
n = number of observations in the sample
P = level of probability
Priy<yo] = F(yo) = chance y is less than y,
p = fraction of the total sample size

Ry = Rosner’s maximum ratio in Eq. 3-50
R> = Rosner’s second largest ratio in Eq. 3-51

r = number less than N

ri= |xi— x| = absolute residuals used by Tietjen and Moore to determine their zs (par. 3-5.5.2)
r; = Dixon’s statistics for testing outliers (See Table 3-2 for all of Dixon’s definitions used in this

chapter.) For example, ri1 = (X, — xp-1)/ (X2 — X1.)

n
§* = 3(x; — X)’ = total sum of squares about sample mean for the entire sample
&1

3-1



DARCOM-P 706-103

2% __
St =

2 —
Sn,n—l -

il _E
Si2 =

5
Setes] Sl “ e
| | 1 I

G
ol

&
il

)_Cn,n—l =

3-2

Hawkins’ inlier sum of squares based on unsuspected sample values

sum of squares, omitting the two highest sample values x,-; and x,

n

3 (x; — X1,2)° = sum of squares, omitting the two lowest sample values

=3

sample standard deviation based on (n — 1) degrees of freedom

VE(xi — X)?/n = \/(n — 1)/n s = sample standard deviation based on total sample size n
sample variance based on (n — 1) degrees of freedom (See Eq. 3-2.)
independent estimate of the standard deviation based on v degrees of freedom
(x» — X)/s = statistic for testing whether the largest sample value x, is too large
values based on coordinates x,y

(x — x1)/s = statistic for testing x;

values of T; and T, based on an independent s, with v degrees of freedom in Egs. 3-59 and
3-60

critical T-values in Eqgs. 3-65 and 3-66 based on known population standard deviation o

= largest signed value of #; (See Eq. 3-13.)
= (x; — Xx)/s" (See Eq. 3-11.)

independent sum of squares used by Hawkins in Eq. 3-54

Wilk-Shapiro statistic of Eq. 3-65

X, — X1 = sample range

ratio of sample range to sample standard deviation. Sometimes called the “studentized”
range, although studentization usually calls for an independent s in the denominator.

= limit (of integration) for the range w

range or maximum dispersion of a sample of three observations, i.e., largest minus smallest
values

= ith ordered sample value in order of magnitude x; < x;, < x; <- - < x,
= largest sample value

smallest sample value

= sample value making R; a maximum

% x;/n = sample mean

=1

grand mean

n—k

2 xi/(n — k), Tietjen-Moore mean
=1

n-2
2 xi/(n — 2) = mean, omitting x,-; and x,
=1

n
= 3 xi/(n — 2) = mean, omitting x; and x;
=3

ith observation or sample value in the order taken, the original sample being x{, x3, - - -, x}, x,
Lieblein’s sample of three observations, where x’ and x” are the two closest values

absolute difference or positive value of the difference between any two sample values x; and
Xk

variables of integration, or variables, also coordinates

(x"— x")/(x3 — x1) = Lieblein’s ratio in Eq. 3-26

= a limit
= original observed x that is the ith closest to the sample mean x
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zi = Tietjen-Moore designation for the original observations x;, such that z is that particular x for
which the r; is the ith ordered (increasing) absolute residual

z = mean of the full sample = x also
zx = Tietjen-Moore mean of the (n — k) least extreme observations given by Eq. 3-45
a = probability level = 0.05, 0.01, etc.
ai-r = percentage point as in Eq. 3-31
B = probability level
Ai(B) = level for Rosner’s R;
u = population or universe mean
o = population standard deviation
o( ) = standard deviation of quantity in parentheses
= estimate of the within variance o/}
X, = limit (of integration) for chi
X' = x'v) = chi-square with » degrees of freedom

3-1 INTRODUCTION

In Chapter 2 we covered the problem of taking measurements and trying to control or assure the quality
of them by knowing the precision and accuracy of our measuring instruments. In fact, it becomes of utmost
importance to have at hand the capability of any measuring instrument we use in applications because tak-
ing action in the presence of errors of measurement would lead to unwarranted results or even to a costly
state of affairs. Hence the need exists to control errors of measurement in all experiments by continuing to
collect information on the precision and accuracy of our measuring instruments. Indeed, this should be a
daily activity because measurements are expensive and should be taken with care.

Once we can insure that our measurements are of high quality, we may proceed with confidence that our
analyses of the data are correct, and we can depend on any action taken as a result thereof. Perhaps one of
the most appropriate next steps is to examine the data we take or acquire for the presence of “outliers”. In
fact, one or more of the errors of measurement could be due to the existence of outlying observations (un-
usually large errors of measurement), and it is important to examine the data for such measurements. For
example, suppose we take the same measurements with two different measuring instruments as indicated
in Chapter 2. We might list the differences in readings of the two instruments for each item or characteris-
tic measured, and if one or more of the differences are large, we would certainly like to investigate the cause
and possibly determine which instrument was at fault. Moreover, even if we made no errors of measure-
ment or screened them out, our observations may still contain some deviant values. Also we would like to
be able to judge whether there could have been a shift in level, or perhaps increased dispersion, other
causes worth looking for, or whether the deviant values are truly characteristic of the items under study.
Hence we must be aware that our data will often have to be screened not only for errors of measurement,
but for “outliers”, or outlying observations, as well. The purpose of this chapter is to present methods for
detecting outlying observations and for treating them in further analyses.

An outlying observation, or an *“outlier”, is one of the sample values that appears to deviate markedly
from the other members of the sample in which it occurs. In this connection, the two possible alternatives
that follow are of some primary interest to us:

1. An outlying observation may be merely an extreme manifestation of the random variability inherent
in the data. If this is true, the values should be retained and processed in the same manner as the other ob-
servations in the sample.

2. On the other hand, an outlying observation may be the result of gross deviation from the prescribed
experimental procedure or an error in calculating or recording the numerical value. In such cases, it may
be desirable to undertake an investigation to determine the reason for the aberrant value. The observation
may even eventually be rejected as a result of the investigation, though not necessarily so. At any rate, in
subsequent data analysis the outlier or outliers will be recognized as probably being from a different popu-
lation than that of the other sample values.
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It is our purpose to provide statistical rules that will lead the experimenter almost unerringly to look for
causes of outliers when they really exist and, hence, to decide whether previously given Alternative 1 is not
the more plausible hypothesis to accept as compared to Alternative 2 in order that the most appropriate
action in further data analysis may be taken. The procedures presented herein apply primarily to the
simplest kind of experimental data, i.e., replicate measurements of some property of a given material or ob-
servations in a supposedly single random sample. Nevertheless, the tests suggested do cover a wide enough
range of cases in practice to have rather broad utility.

When the skilled experimenter is clearly aware that a gross deviation from prescribed experimental
procedure has taken place, the resultant observations should be discarded whether or not they agree with
the rest of the data and without recourse to statistical tests for outliers. If a reliable correction procedure,
for example, for temperature, is available, the observation may sometimes be corrected and retained.

In many cases evidence of deviation from prescribed procedure will consist primarily of the discordant
value itself. In such cases it is advisable to adopt a cautious attitude. Use of one of the criteria discussed
subsequently will sometimes permit a clear-cut decision to be made. In doubtful cases the experimenter’s
judgment will have considerable influence. When the experimenter cannot identify abnormal conditions, he
should at least report the discordant values and indicate to what extent they have been used in the analysis
of the data.

Thus for purposes of orientation relative to the overall problem of experimentation, our position on the
matter of screening samples for outlying observations is precisely as follows:

1. Physical Reason Known or Discovered for Outlier(s):
a. Reject observation(s).
b. Correct observation(s) on physical grounds.
c. Reject it (them) and possibly take additional observation(s).
2. Physical Reason Unknown—Use Statistical Test:
a. Reject observation(s).
b. Correct observation(s) statistically.
c. Reject it (them) and possibly take additional observation(s).
d. Employ truncated or censored sample theory not involving the suspected outliers for estimation
purposes (Chapter 7).

The statistical test may always be used to lend support to a judgment that a physical reason does actual-
ly exist for an outlier, or the statistical criterion may be used routinely as a basis on which to initiate action
to find a physical cause.

Before proceeding to the presentation and discussion of statistical significance tests for detecting outlying
observations, we will cover a very important topic—namely, that of the mathematical bounds on certain of
the key sample statistics. In other words, the statistical tests of significance will cover the cases in which we
deal with or detect unusually large “random” variations, and there also actually exist some “mathematical
limits” on the sample values or statistics themselves without any reference to random variations. These
conditions will, in fact, have direct bearings on the suitability of the statistical tests of significance concern-
ing whether they are even mathematically possible. For example, if for some given sample size there is an
upper or mathematical bound on the deviation of the largest observation from the sample mean, there is no
point in testing it statistically using the random sample theory to detect whether it is more deviant than
that bound since this would be meaningless. We now discuss the mathematical bounds.

3-2  PRELIMINARIES AND MATHEMATICAL BOUNDS OF INTEREST

3-2.1 DESIGNATION OF THE SAMPLE

Ordinarily, in our procedures for detecting outlying observatior:s in samples, we consider that a rand ym
sample of size n has been drawn from a population—almost always assumed to be a Gaussian or nosmal
universe—and then a significance test will be carried out to judge whether or not, for example, the largest
observation is too high or the smallest observation too low. However, for our discussion of mathematical
bounds, we do not need to have any reference whatever to either a random sample or a normal universe.
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We will designate the sample in the order the observations were drawn by
X1, X2, X3, o o\ XEy o o X

However, since we will be concerned almost exclusively with ordered sample observations, the sample
values are listed as

XISEX=Ex3=S =X = X
where
x, = largest observation in the sample.
x1 = smallest observation in the sample.
The sample mean X is given by
n
‘X = Xxi/n = Zxi/n, 3-1

and the sample variance s> based on (n—1) degrees of freedom (df) is given by

" 3x” — (Ix) A
e L (3-22)

= X3 (n— %) /[2000 — 1)) (3-2b)

Eq. 3-2b for s? is especially of interest. Because the observations x; and x; (%)) are independent, it is
easier to take expected values of that particular form, and if one of the observations, say xx, k # i, is an
outlier, the absolute difference |x; — x¢] would be large in comparison to other absolute differences not
involving xx .

Finally, we will make use of the maximum dispersion or sample range w given by

W= Xy — X1, (3-3)

i.e., the largest minus the smallest observations. ‘
With these definitions, we may now give several mathematical bounds of interest.

3-2.2 BOUNDS FOR THE RATIO OF THE SAMPLE RANGE TO THE SAMPLE
STANDARD DEVIATION

G. W. Thomson (Ref. 1) has determined the upper and lower mathematical bounds of the ratio w/s of
the sample range to the standard deviation. We quote from his paper (Ref. 1):

“It can readily be shown that the upper and lower bounds of w/s for samples from any population with
nonzero variance arise from certain simple configurations of the sample points. The upper bound, which
corresponds to minimum s for a given range w, results from the arrangement with (n — 2) of the points at
the sample mean and the other two points at equal distances from the mean. The lower bound, which
corresponds to maximum s for a given w, results from the concentration of half of the sample points at one
extreme and the other half (plus one, if the sample size is odd) of the sample points at the other extreme.
The numerical values of the bounds can be shown to be: . . .

2\/(n — 1)/n, for n even

Sw/is=2n—1).” 3-4
2\/n/(n+ 1) ,fornodd ). e
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We will illustrate the inequality (Eq. 3-4) with an example.

Example 3-1: .

From the data of Table 2-2 we found that instrument I, had the largest standard deviation in errors of
measurement. Hence, we calculate the ratio of the range to standard deviation and check with the bounds
of Eq. 3-4 to see whether there is possibly an error in computation.

We see from Eq. 2-9 that

S2=10.04714, and therefore, our s =S, = 0.2171.

Furthermore, from either Table 2-1 or Table 2-2 we note the largest reading for instrument I, is 10.32, and
the smallest reading is 9.44, or the sample range is w = 0.88. Hence the quantity w/s = 0.88/0.2171 = 4.053,
whereas the upper bound is

V2 =1) = 7.62

and the lower bound is

2\V(n—=1) /n=197
so that neither bound is reached, and ““everything is go” to test for statistical outliers!
Since the standard deviation is the most efficient estimate of dispersion, but is more difficult to calculate,
statisticians have often determined the range and used the bounds of Eq. 3-4 as a numerical check for wild
values of the sample standard deviation.

3-2.3 BOUNDS FOR THE RESIDUALS OR DEVIATIONS FROM THE SAMPLE MEAN

In a 1968 paper titled “How Deviant Can You Be?”, Nobel Prize winner Paul A. Samuelson
(Ref. 2) studied maximum deviations from the sample and population means and showed that for
a finite universe of N items, no value can lie more than v(N = 1) standard deviations away from the
mean. Samuelson also showed for the sample standard deviation s’ based on the number of sample
items n, instead of (n — 1) df, that

max|x;, — x| =<+/n—1s (3-5)

where the sample standard deviation s’ based on a total sample size n is

s'=/2(xi— x)*/n. (3-6)

The conversion of 5, from Eq. 3-2, to s’ is given by
s=\n/(n—1)s 3-7)

and hence in terms of s, we also have that
max|x; — ¥| <[(n — 1)/\/n ]s. (3-8)

Samuelson (Ref. 2) furthermore points out that the inequality (Eq. 3-5) may be sharpened in only
special cases or restrictions:

“Thus, if the probability distribution is known to be symmetric, the greatest relevant deviant will be
found where all but two of the observations are clustered halfway between the remaining two, and for a
symmetric distribution the above theorem [our inequality (Eq. 3-5) using 5'] can have vN — T replaced by
vN/2, a definite improvement when N >2.”
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It is well-known that for any population with mean n and standard deviation ¢, the Tchebycheff
inequality (TI) states that

Pri) (x = p) /o] ZL1S1/L2 (3-9)
where
L = selected “limit”.

Samuelson (Ref. 2) applies this to a finite universe of N items by equating 1/L? to 1/N to give

Prl|(x = ) /o] =VN] < 1/N (3-10)

which, for example, states that for a universe of only 2 items not more than one of the observations can
lie more than 1.414 standard deviations away from the mean with the probability 0.5. The inequality (Eq.
3-5) is much sharper, however, because it says that no observation may lie more than just 1.00 standard
deviation from the mean.
Samuelson (Ref. 2) summarizes his results in terms of the following two theorems and a final summary:
“Theorem. Of N observations, no r (of them) [r = number less than N] can be more than the following
number of standard deviations from the mean:
vN/r for r an even number,

(N =1) /v (Nr=T) for r an odd number.

“Theorem: No one of the N observations can be more than N mean absolute deviations away from the
median.

“Final Summary: Although Tchebycheff’s inequality cannot, in general, be improved upon, for uni-
verses (or samples) known to consist of a finite number of items N, an improvement on Tchebycheff’s in-
equality is possible when dealing with » of N items, r being odd, but with the relative amount of improve-
ment —0 as N—o0.”

In a fundamental and very important paper, which appeared in 1936, Pearson and Chandra Sekar (Ref.
3) studied the recommendation of W. R, Thompson (Ref. 4) for detecting outliers in a sample based on
the use of an arbitrary x; selected at random from a sample of size n and the criterion

= (x—X)/s". (3-11)

and

In particular, Pearson and Chandra Sekar (Ref. 3) were interested in the possible use of Eq. 3-11 and its
efficiency in testing for outliers in the presence of more than a single outlier. They found, for example,
that if the significance level of 0.10 (10%) were used, involving the risk of rejecting one observation in
every 10 samples when the null hypothesis H, is true, then under po circumstances could one reject more
than one observation until a sample of size n = 11 is reached, and one cannot reject more than two obser-
vations until n = 22 is reached; no more than three observations until n = 33, etc. This led Pearson and
Chandra Sekar to make a thorough study of the mathematical bounds on the sample values since the sta-
tistical frequencies of acceptance and rejection from random sample theory may be spuriously interpreted.

Pearson and Chandra Sekar (Ref. 3) considered the n values of the t; in a sample arranged in descend-
ing order of absolute magnitude as

[l =) Z- - - = (4 (3-12)
and also the n values of the #; arranged in magnitude considering sign as

= > > (3-13)

In an appendix to Ref. 3, J. M. C. Scott presented the following information concerning bounds that
may be of some possible interest:
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max|t;| = \/n(n — i)/[i(n —i) + 1], if i odd and i < n (3-14)

(or max|7)| = vn — 1 as Samuelson (Ref. 2) later showed)
max|t| = /(1 — D/(n + 1), if i = nand i is odd (3-15)
max|t| =+/n/i, if i is even. (3-16)

The quantities ¥ and /™"

(Appendix, Ref. 3) shows that

also reach into the tails of distributions of interest, as J. M. C. Scott
max 1Y =\/(n —2)/2 (3-17)
min /" = —\/(n — 2)/2. (3-18)

and

We quote from Scott (Ref. 3):
“The maximum value of |#| occurs when (n — 1) of the observations have the same (identical) value and
the remaining observation any different value. The maximum 7 occurs when (n — 2) observations have
the same (identical) value and the other two have a different but common value, that is, /' =? . The
maximum | 1,| occurs when (n — 2) observations have the same or identical value and the other two differ
with 11 = — ,. The maximum [¢3| occurs when (n — 3) observations have the same value and the other
three differ with 7/ = £, = —¢3, etc.” (This process continues similarly as described in Ref. 3, Appendix.)

Thus we see that Pearson and Chandra Sekar (Ref. 3), in fact, made a very substantial contribution to
the problem of testing random sample values for outliers, especially for small sample size n. Indeed, the
mathematical bounds will be the controlling conditions in some cases, and we should be aware of their ef-
fect, especially insofar as such bounds have rigid controls on random sampling distributions for testing
outliers.

With these preliminaries on mathematical bounds, we will consider the sampling or probability distri-
butions for the special cases of samples of size either n = 2 or n = 3.

3-3 SOME RELATIONSHIPS AND SAMPLING DISTRIBUTIONS FOR SAMPLES OF
SIZE TWO OR THREE

3-3.1 RELATION BETWEEN THE RANGE AND STANDARD DEVIATION FOR A
SAMPLE OF SIZE TWO

When n = 2, there is a special relation between the sample range and the two sample standard devia-
tions, i.e.,

w=2s'"=\2s  (n=2only). (3-19)

The relationship given by Eq. 3-19 is often of some practical interest. In fact, since the range and the two
sample standard deviations differ only by constant factors, it is easy to establish the probability distribution
of all three quantities. In this connection, it is well-known from statistical theory that, for any sample size
and the assumption of sampling a normal population, the quantities

(n—1s*/o" =ns?|o* = 3(xi — X)*/ > = x’(n — 1). (3-20)

Or, the total sum of squares (SS) about the sample mean divided by the population variance follows the
chi-square distribution with (» — 1) df.
From Eq. 3-20 it is easily noted that when we have a sample of size n = 2,

s2/0? = 25"/ % = w2/(20?) = x*(1) (3-21)
3.8
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or all of the first three quantities in Eq. 3-21 are distributed as chi-square with a single degree of freedom.
Moreover, from Eq. 3-21 it is easily seen that

s/a=\2s"/o=wh2o=x(1), (3-22)

or the square roots of the first three quantities are distributed as chi with 1 df.
This means that

Prs/ o < Xo] = Pr[s’|a < Xo/\/2]= Pr[w/o < /2 Xq]

= 2" (1/7/2m)exp(—£3/2)dt — 1, X¢ =0 (3-23)

which is in terms of the standardized normal integral

3-3.2 THE RANGE FOR SAMPLES OF SIZE THREE AND PROPERTIES OF THE TWO
CLOSEST OF THREE OBSERVATIONS

The case of a sample of size three (n = 3) from a normal population is also of some special practical in-
terest concerning the problem of outliers. To begin with, the ratio of the sample range to the sample
standard deviation takes on a rather simple distributional form, and historically, there has been much in-
terest in samples of size three from the standpoint of checking results. Thus many experimenters, espe-
cially chemists, have reasoned as follows: “If I take only one observation, then I can’t be sure it is a good
value. If I take two observations, then I can’t know which one is correct either. But if I take three obser-
vations, then I can always select the closest two of the three and depend on them!” '

The range w; of a sample of three observations is

W3 = X3 — XI (3-24)

i.e., the largest minus the smallest of the observations.

It can be shown (see for example Ref. 5, p. vii, Eq. 12, and p. xxxiii, Eq. 46, that the probability
distribution of wi/o can be related directly to the bivariate normal distribution. In fact, for sam-
ples of size n = 3

Prws/ o < wo] = 12V (wo/\/2, wo//6) (3-25)

wo/\/2  x/\/3
=12, J, (1/2m)exp[—(x* + y’)/2]dxdy

and it may be determined directly from Table III of Ref. 5.

The probability integral of the range for sample sizes of n = 2 (1)20, including n = 3, has been tabu-
lated by Pearson and Hartley in Ref. 6.

As a result of intense interest on the part of scientific and engineering personnel, especially chemists,
Lieblein (Ref. 7) carried out an excellent study on the properties of certain sample statistics involving the
closest pair of observations in a sample of size three. This is especially important since there is clearly a
very natural tendency to quote, use, and depend on only the closest two of three observations and to brand
the remaining one as being discrepant, or an “outlier”. Lieblein describes the condition quite aptly in the
abstract or summary of his paper (Ref. 7) as follows:

“Triplicate readings are of wide occurrence in experimental work. Occasionally, however, only the
closest pair of a triad is used, and the outlying high or low one discarded as evidencing some gross error.
The present paper presents a mathematical investigation leading to precise determination of some of the
biases that result from such selection. This project was suggested by certain experiments involving random
sampling numbers and analysis of published chemical determinations. The theoretical findings agree close-
ly with the empirical results and imply that selected pairs not only tend to overestimate considerably the
precision of the experimental procedure, but also result in less accurate determinations.”.
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Lieblein’s paper (Ref. 7) is highly recommended for study by experimental investigators in all fields of
application since the investigators may be often throwing away important information in the sample and,
hence, possibly render bias to their conclusions. For our purposes, however, we will limit our coverage to
the sampling distributions of normal samples of size three for (1) the ratio of the difference between the
closest two of three observations and the sample range and (2) the ratio of the sample range to the sample
standard deviation. Thus the three ordered observations are

X1§X2SX3

and, as Lieblein did, we designate these three (not ordered) values as

where x’ and x”’ are the closest two of the three, and we take x’= x” for convenience. Lieblein then finds
the probability distribution function (pdf) of

y=&"=x")/(xs = x1) (3-26)
for sample of n = 3 from a normal parent to be simply
o) =33/[r(¢’ —y +D], 0<y <1/2. (3-27)

We note that the sample statistic y in Eq. 3-26 does not depend on any nuisance population parameters

and is completely independent of origin and scale effects. Thus for random samples of three from an as-

sumed normal population, Eq. 3-26 may be calculated to discern whether the closest two observations are

actually too close or too far apart by referring the calculated value to a table of percentage points.
The cumulative distribution of y in Eq. 3-26 is (Ref. 7)

Py < yo] = F(yo) = (6/ ) arc tan [(2yo — 1)/+/3 ]+ 1* (3-28)

where
Yo = any upper limit.

The mean E(y) and standard deviation o(y) of y are

E(y) = 0.2621 (3-29)
and
a(y) = 0.1428. (3-30)

The lower 1% probability level of Eq. 3-28 is y, = 0.00603, and the lower 5% level is at yo = 0.02979
(Ref. 7) for judging whether the two closest observations are ““‘unusually close”, so that the third one is an
“outlier”. If y of Eq. 3-26 does not fall below one of these selected values, the remaining observation
should not be suspected.

For samples of size three, a paper by Anscombe and Barron (Ref. 8) is also of particular interest be-
cause it discusses the choice of an outlier rejection criterion in terms of the effect of it on the mean square
error of estimates of population parameters, e.g., the mean.

Finally, for samples of three observations the distribution of the sample range divided by the sample
standard deviation, i.e., w/s, may be of particular interest and, in fact, takes on a rather simple form.
Thomson (Ref. 1) points out in this connection that the upper a-r percentage point of w/s is determined
simply from

a1 = 2c0s[30°(1 — F)] (3-31),

*The arc tan is in radians. When arc tan is expressed in deg, the constant 6/« must be changed to 1/30.
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where
F = cumulative relative frequency.

Thus if we want the upper 5% point or the 95% cumulative level, we set F = 0.95 and find that
ap.95 — Upper o005 = 1.9993,

Lower percentage points are obtained by putting £ <{0.50, e.g., F = 0.05 in Eq. 3-31 gives the lower 5%
level-—or actually the 5% level—as

Lower ao.05s = 2co0s[30°(0.95)] = 1.75763.

Unfortunately, if w/s is significantly low (or high), it would not reveal whether x; or x; is an outlier.
Thus Lieblein’s closest two out of three test, or Eq. 3-26, would be best for this. See Example 3-2 for an il-
lustration of Lieblein’s procedure.

Example 3-2:

To illustrate Lieblein’s “closest pair of three’ statistical test, let us take the data on the fourth round of
Table 2-2. In this particular case the measured times for observers I, I, and I; are 9.79, 9.71, and 9.70 s,
respectively. Is there any evidence that I;’s reading of 9.79 is an outlier?

We note in this connection that

9.70 < 9.71<9.79,

so that the range w = x; — x; = 9.79 — 9.70 = 0.09. Also x’ = 9.71 and x”’ = 9.70, so that x’ — x”" =
0.01. Thus from Eq. 3-26 we see that Lieblein’s

971 = 9.70
Y = 979970

= 0.01/0.09 = 0.111

and from Eq. 3-28

Prly <0.111] = 0.19

which does not fall in the range of a significant probability, i.e., Pr <0.05, for example. Therefore, we
conclude that the closest two values, 9.70 and 9.71, are not so close as to indicate that 9.79 should be dis-
carded. Also this example points out that, as Lieblein has indicated, if only the closest two values of the
three were used, we would be discarding too often an apparently good observation due to random sam-

pling.
3-4 BASIS OF STATISTICAL CRITERIA FOR OUTLIERS

We will now develop sample criteria for testing the significance of the outlying or remote values for
general sample sizes—i.e., not only for n = 2 or 3 as previously stated, but also for any greater sample size
as well. In fact, the coverage that follows represents the more usual cases that will occur in practice.

There are a number of criteria for testing outliers. In all of these the doubtful observation is included in
the calculation of the numerical value of a sample criterion (or statistic). The numerical value is then com-
pared with a critical value based on the theory of random sampling to determine whether the doubtful ob-
servation is to be retained or rejected. The critical value is that value of the sample criterion that would be
exceeded by chance with some specified (small) probability on the assumption that all the observations
did indeed constitute a random sample from a common system of causes, a single parent population, dis-
tribution, or universe. The specified small probability is called the significance level or percentage point
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and can be thought of as the risk of erroneously rejecting a good observation. It becomes clear, therefore,
that if there exists a real shift or change in the value of an observation that arises from nonrandom
causes—human error, loss of calibration of instrument, change of measuring instrument, or even change
of time of measurements, etc.—the numerical value of the sample criterion used would exceed the critical
value based on random sampling theory. Tables of critical values are usually given for several different
significance levels, for example, 5% or 1%. For statistical tests of outlying observations, it is generally
recommended that a low significance level, such as 1%, be used and that significance levels greater than
5% would not be common practice. In this chapter we will usually illustrate the use of the 5% significance
level. Proper choice of a significance level depends on the particular problem, just what may be involved,
and the risk that one is willing to take in rejecting a good observation—i.e., whether the null hypothesis
stating *“all observations in the sample come from the same normal population” may be properly as-
sumed.

It should be pointed out that almost all criteria for outliers are based on an assumed underlying normal
(Gaussian) population, universe, or distribution. When the data are not normally or approximately
normally distributed, the probabilities associated with these tests will be different. Until such time as cri-
teria not sensitive to the normality assumption are developed, the experimenter should be cautioned
against interpreting the probabilities too literally.

Although our primary interest is to detect outlying observations, we remark that some of the statistical
criteria presented may also be used to test the hypothesis of normality or that the random sample taken
did indeed come from a normal, or Gaussian, population. For all practical purposes the end result is the
same, i.e., we really wish to know whether we ought to proceed as if we have a sample of homogeneous
observations—i.e., no outlying observations— from the same (normal) universe.

3-5  RECOMMENDED OUTLIER DETECTION CRITERIA FOR SINGLE SAMPLES

3-5.1 TESTS FOR EITHER THE HIGHEST OR LOWEST OBSERVATION

Let the sample of n observations be denoted in order of increasing magnitude x; <x; < x; <
=< Xxn. The x| or x, denotes the doubtful value, i.e., the smallest or largest value. The test criterion for the
largest item 7, , recommended for testing whether or not the largest observation is an outlier, based on
the work of Grubbs (Refs. 9, 10, 11, and 12), 1s as follows:

T, = (3-32).

where
x = arithmetic average of all n values
s = estimate of the population standard deviation based on the sample data calculated as follows:

1/2 .2 1/2
: =[Z(x,- - Ez] = [nzx,- - _(zx,-)z] (3-33)
n—1 n(n —1)

If x,, the smallest value, rather than x,, is the doubtful value, the test criterion (Refs. 9, 10, 11, and 12)
s

T, = f_—si . (3-34)

The critical values for either case, for the 1 and 5% levels of significance, from Grubbs and Beck (Ref. 13),
are given in Table 3-1. Table 3-1 gives the one-sided significance levels. In many previous treatments of
outliers, the tables listed values of significance levels double those in the accompanying tables since it was
considered that the experimenter would test either the lowest or highest observation (or both) for statisti-
cal significance. However, to be consistent with actual practice and in an attempt to avoid any further
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TABLE 3-1

‘ CRITICAL VALUES FOR T(ONE-SIDED TEST OF 7, OR 7,) WHEN THE STANDARD DEVIATION
IS CALCULATED FROM THE SAME SAMPLE (Ref. 13)

No. Upper Upper Upper Upper Upper Upper
Obs. 0.1% Sig. 0.5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.
n Level Level Level Level Level Level
3 1.155 1.155 1.155 1.155 1.153 1.148
4 1.499 1.496 1.492 1.481 1.463 1.425
5 1.780 1.764 1.749 1.715 1.672 1.602
6 2.011 1.973 1.944 1.887 1.822 1.729
7 2.201 2.139 2.097 2.020 1.938 1.828
8 2.358 2.274 2.221 2.126 2.032 1.909
9 2.492 2.387 2.323 2.215 2.110 1.977
10 2.606 2.482 2410 2.290 2.176 2.036
11 2.705 2.564 2.485 2.355 2.234 2.088
12 2.791 2.636 2.550 2.412 2.285 2.134
13 2.867 2.699 2.607 2.462 2.331 2.175
14 2935 2.755 2.659 2.507 2.371 2213
15 2.997 2.806 2.705 2.549 2.409 2.247
16 3.052 2.852 2.747 2.585 2.443 2.279
17 3.103 2.894 2.785 2.620 2.475 2.309
18 3.149 2.932 2.821 2.651 2.504 2.335
19 3.191 2.968 2.854 2.681 2.532 2.361
20 3.230 3.001 2.884 2.709 2.557 2.385
21 3.266 3.031 2912 2.733 2.580 2.408

‘ 22 3.300 3.060 2.939 2.758 2.603 2.429
23 3.332 3.087 2.963 2.781 2.624 2.448
24 3.362 3.112 2.987 2.802 2.644 2.467
25 3.389 3.135 3.009 2.822 2.663 2.486
26 3415 3.157 3.029 2.841 2.681 2.502
27 3.440 3.178 3.049 2.859 2.698 2.519
28 3.464 3.199 3.068 2.876 2.714 2.534
29 3.486 3.218 3.085 2.893 2.730 2.549
30 3.507 3.236 3.103 2.908 2.745 2.563
31 3.528 3.253 3.119 2.924 2.759 2.57T7
32 3.546 3.270 3.135 2.938 2.773 2.591
33 3.565 3.286 3.150 2.952 2.786 2.604
34 3.582 3.301 3.164 2.965 2.799 2.616
35 3.599 3.316 3.178 2.979 2.811 2.628
36 3.616 3.330 3.191 2.991 2.823 2.639
37 3.631 3.343 3.204 3.003 2.835 2.650
38 3.646 3.356 3.216 3.014 2.846 2.661
39 3.660 3.369 3.228 3.025 2.857 2.671
40 3.673 3.381 3.240 3.036 2.866 2.682
41 3.687 3.393 3.251 3.046 2.877 2.692
42 3.700 3.404 3.261 3.057 2.887 2.700
43 3.712 3.415 3.271 3.067 2.896 2.710
44 3.724 3.425 3.282 3.075 2.905 2,719
45 3.736 3.435 3.292 3.085 2914 2.727
46 3.747 3.445 3.302 3.094 2.923 2.736
47 3.757 3.455 3.310 3.103 2.931 2.744
48 3.768 3.464 3.319 3.111 2.940 2.753

(cont’d on next page)
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TABLE 3-1 (cont’d)

No. Upper Upper Upper Upper Upper Upper
Obs. 0.1% Sig. 0.5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig. .
n Level Level Level Level Level Level
49 3.779 3474 3.329 3.120 2.948 2.760
50 3.789 3.483 3.336 3.128 2.956 2.768
51 3.798 3.491 3.345 3.136 2.964 2.775
52 3.808 3.500 3.353 3.143 2.971 2.783
53 3.816 3.507 3.361 3.151 2.978 2.790
54 3.825 3.516 3.368 3.158 2.986 2.798
55 3.834 3.524 3.376 3.166 2.992 2.804
56 3.842 3.531 3.383 3.172 3.000 2.811
57 3.851 3.539 3.391 3.180 3.006 2.818
58 3.858 3.546 3.397 3.186 3.013 ' 2.824
59 3.867 3.553 3.405 3.193 3.019 2.831
60 3.874 3.560 3411 3.199 3.025 2.837
61 3.882 3.566 3.418 3.205 3.032 2.842
62 3.889 3.573 3424 3.212 3.037 2.849
63 3.896 3.579 3.430 3.218 3.044 2.854
64 3.903 3.586 3.437 3.224 3.049 2.860
65 3.910 3.592 3.442 3.230 3.055 2.866
66 3.917 3.598 3.449 3.235 3.061 2.871
67 3.923 3.605 3.454 3.241 3.066 2.877
68 3.930 3.610 3.460 3.246 3.071 2.883
69 3.936 3.617 3.466 3.252 3.076 2.888
70 3.942 3.622 3471 3.257 3.082 2.893
71 3.948 3.627 3.476 3.262 3.087 2.897
72, 3.954 3.633 3.482 3.267 3.092 2.903
73 3.960 3.638 3.487 3.272 3.098 2.908
74 3.965 3.643 3.492 3.278 3.102 2912
75 3.971 3.648 3.496 3.282 3.107 2917
76 3.977 3.654 3.502 3.287 3.111 2.922
77 3.982 3.658 3.507 3.291 3.117 2.927
78 3.987 3.663 3.511 3.297 3.121 2.931
79 3.992 3.669 3.516 3.301 3.125 2.935
80 3.998 3.673 3.521 3.305 3.130 2.940
81 4.002 3.677 3525 3.309 3.134 2.945
82 4.007 3.682 3.529 3.315 3.139 2.949
83 4.012 3.687 3.534 3.319 3.143 2.953
84 4.017 3.691 3.539 3.323 3.147 2.957
85 4.021 3.695 3.543 3.327 3.151 2.961
86 4,026 3.699 3.547 3.331 3.155 2.966
87 4.031 3.704 3.551 3.335 3.160 2.970
88 4.035 3.708 3.555 3.339 3.163 2.973
89 4.039 3.712 3.559 3.343 3.167 2.977
90 4.044 3.716 3.563 3.347 3.171 2.981
91 4.049 3.720 3.567 3.350 3.174 2.984
92 4,053 3.725 3.570 3.355 3.179 2.989
93 4.057 3.728 3.575 3.358 3.182 2.993
94 4.060 3.732 3.579 3.362 3.186 2.996
95 4.064 3.736 3.582 3.365 3.189 3.000
96 4.065 3.739 3.586 3.369 3.193 3.003
97 4,073 3.744 3.589 3.372 3.196 3.006 .
98 4.076 3.747 3.593 3.377 3.201 3.011

(cont’d on next page)
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TABLE 3-1 (cont’d)

No. Upper Upper Upper Upper Upper Upper

Obs. 0.1% Sig. 0.5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.
n Level Level Level Level Level Level
99 4.080 3.750 3.597 3.380 3.204 3.014

100 4.084 3.754 3.600 3.383 3.207 3.017
101 4.088 3.757 3.603 3.386 3.210 3.021
102 4.092 3.760 3.607 3.390 3.214 3.024
103 4.095 3.765 3.610 3.393 3.217 3.027
104 4.098 3.768 3.614 3.397 3.220 3.030
105 4.102 3.771 3.617 3.400 3.224 3.033
106 4.105 3.774 3.620 3.403 3.227 3.037
107 4.109 3.777 3.623 3.406 3.230 3.040
108 4.112 3.780 3.626 3.409 3.233 3.043
109 4.116 3.784 3.629 3412 3.236 3.046
110 4.119 3.787: 3.632 3415 3.239 3.049
111 4,122 3.790 3.636 3418 3.242 3.052
112 4.125 3.793 3.639 3.422 3.245 3.055
113 4.129 3.796 3.642 3.424 3.248 3.058
114 4.132 3.799 3.645 3.427 3.251 3.061
115 4.135 3.802 3.647 3.430 3.254 3.064
116 4.138 3.805 3.650 3.433 3.257 3.067
117 4.141 3.808 3.653 3.435 3.259 3.070
118 4.144 3.811 3.656 3.438 3.262 3.073
119 4.146 3.814 3.659 3.441 3.265 3.075
120 4.150 3.817 3.662 3.444 3.267 3.078
121 4.153 3.819 3.665 3.447 3.270 3.081
122 4.156 3.822 3.667 3.450 3.274 3.083
123 4.159 3.824 3.670 3.452 3.276 3.086
124 4.161 3.827 3.672 3.455 3.279 3.089
125 4.164 3.831 3.675 3.457 3.281 3.092
126 4.166 3.833 3.677 3.460 3.284 3.095
127 4.169 3.836 3.680 3.462 3.286 3.097
128 4.173 3.838 3.683 3.465 3.289 3.100
129 4.175 3.840 3.686 3.467 3.291 3.102
130 4.178 3.843 3.688 3.470 3.294 3.104
131 4.180 3.845 3.690 3.473 3.296 3.107
132 4.183 3.848 3.693 3475 3.298 3.109
133 4.185 3.850 3.695 3478 3.302 3.112
134 4.188 3.853 3.697 3.480 3.304 3.114
135 4.190 3.856 3.700 3.482 3.306 3.116
136 4.193 3.858 3.702 3.484 3.309 3.119
137 4.196 3.860 3.704 3.487 3.311 3.122
138 4.198 3.863 3.707 3.489 3.313 3.124
139 4.200 3.865 3.710 3.491 3.315 3.126
140 4,203 3.867 3.712 3.493 3.318 3.129
141 4.205 3.869 3.714 3.497 3.320 3.131
142 4.207 3.871 3.716 3.499 3.322 3.133
143 4.209 3.874 3.719 3.501 3.324 3.135
144 4.212 3.876 3.721 3.503 3.326 3.138
145 4214 3.879 3.723 3.505 3.328 3.140
146 4.216 3.881 3.725 3.507 3.331 3.142
147 4.219 3.883 3.727 3.509 3.334 3.144

Reprinted with permission. Copyright © by the American Statistical Association.
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misunderstanding, single-sided significance levels are tabulated herein so that both viewpoints can be rep-
resented. The user can then make his own judgments in his many individual applications.

The hypothesis that we are testing in every case is that all observations in the sample come from the
same normal population. Let us adopt, for example, a significance level of 0.05 (or 0.01). If we are in-
terested only in outliers that occur on the high side, we should always use the statistic T, = (xn—X)/s
(Eq. 3-32) and take as critical value the 0.05 (or 0.01) point of Table 3-1. On the other hand, if we are interested
only in outliers occurring on the low side, we should always use the statistic 7, = (¥ — x1) /s (Eq. 3-34) and again
take as a critical value the 0.05 (or 0.01) point of Table 3-1. Suppose, however, that we are interested in outliers
occurring on either side but do not believe that outliers can occur on both sides simultaneously. We might.
believe that at some time during the experiment something possibly happened to cause an extraneous variation
on the high side or on the low side but that it was very unlikely that two or more such events could have
occurred: one being an extraneous variation on the high side and the other an extraneous variation on the low
side. With this point of view we should use the statistic T, =(x, — ¥)/s or the statistic T1=1(x — x1}/s, whichever
is larger. If in this instance we use the 0.05 point of Table 3-1 as our critical value, the true significance level
would be twice 0.05 or 0.10. If we wish a significance level of 0.05 and not 0.10, we must, in this case, use asa
critical value the 0.025 point of Table 3-1. Similar considerations apply to the other tests given in the sequel.

Example 3-3:

As an illustration of the use of 7, and Table 3-1, consider the following 10 observations on breaking
strength (in pounds) of 0.104-in. hard-drawn copper wire arranged in increasing order: 568, 570, 570, 570,
572, 572, 572, 578, 584, 596. The doubtful observation is the high value, x,, = 596. Is the value of 596 sig-
nificantly high?

The mean is X = 575.2, and the estimated standard deviation is s = 8.70. We compute

_ 596 -—-15752
Tw = 270 = 2.39,

From Table 3-1 for n = 10, note that a T\, as large as 2.39 would occur by chance with probability less
than 0.05. In fact, so large a value would occur by chance not much more often than 1% of the time. Thus
using the 5% level of significance, the weight of the evidence is against the doubtful value having come
from the same population as the others (assuming the population is normally distributed). Investigation
of the doubtful value on physical grounds is therefore indicated.

3-5.2 DIXON’S CRITERIA

An alternative system, the Dixon criteria (based entirely on ratios of differences between the observa-
tions), is described in the literature (Ref. 14). It may be used in cases where it is desirable to avoid calcula-
tion of the standard deviation s or where quick judgment is necessary. For the Dixon test the sample cri-
terion, or statistic, changes with sample size. Table 3-2 gives the appropriate statistic to calculate and also
gives the critical values of the statistic for the 1, 5, and 10% levels of significance.

Example 3-4:

As an illustration of the use of Dixon’s test, consider again the observations on breaking strength given
in Example 3-3, and suppose that a large number of such samples had to be screened quickly for outliers,
and it was judged too time-consuming to compute s. Table 3-2 for n = 10 indicates use of

Xn — Xn-1

—Zn = Anl 3-35
rn S » ( )
Thus for n = 10,
ry = X107 Xg (3-36)
X100 T X2
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TABLE 3-2
DIXON CRITERIA FOR TESTING OF EXTREME OBSERVATION
(SINGLE SAMPLE)? (Ref. 14)

Significance Level
n Criterion 10% 5% 1%
3 Fio = (x2 — x1)/(x» — x1) if smallest value is suspected; 0.886 0.941 0.988
4 = (xn — Xn-1)/(x» — x1) if largest value is suspected. 0.679 0.765 0.889
5 0.557 0.642 0.780
6 0.482 0.560 0.698
7 0.434 0.507 0.637
8 rin = (x2 — x1)/(x-1 — x1) if smallest value is suspected,; 0.479 0.554 0.683
9 = (Xn — Xn-1)/(xn — X7) if largest value is suspected. 0.441 0.512 0.635
10 0.409 0.477 0.597
11 ra1 = (x3 — x1)/(xn-) — x)1) if smallest value is suspected; 0.517 0.576 0.679
12 = (x» — Xn-2)/(xn — Xy) if largest value is suspected. 0.490 0.546 0.642
13 0.467 0.521 0.615
14 ra = (x3 — x1)/(x»—2 — x1) if smallest value is suspected; 0.492 0.546 0.641
15 = (xn — Xn-2)/(xn — x3) if largest value is suspected. 0.472 0.525 0.616
16 0.454 0.507 0.595
17 0.438 0.490 0.577
18 0.424 0.475 0.561
19 0.412 0.462 0.547
20 0.401 0.450 0.535
21 0.391 0.440 0.524
22 0.382 0.430 0.514
23 0.374 0.421 0.505
24 0.367 0.413 0.497
25 0.360 0.406 0.489

X Ex S = X

Reprinted with permission. Copyright © by Biometrika 1rustees.

For the measurements of breaking strength in this example,

596 — 584

= 596570 _ 0462,

r

which is a little less than 0.477, the 5% critical value for n = 10. Therefore, under the Dixon criterion, we
should not consider this observation as an outlier at the 5% level of significance. These results illustrate
how borderline cases may be accepted under one test but rejected under another.

It should be remembered, however, that the 7 statistic previously discussed is the best one to use for the
single outlier case, and final statistical judgment should be based on it. See, for example, Ferguson (Refs.
15 and 16). (The advent of the modern, scientific pocket calculator may reduce the need for the “quick”
Dixon ratios.)

Further examination of the sample observations on breaking strength of hand-drawn copper wire indi-
cates that none of the other values need testing for rejection.

With experience we may just look at the sample values to observe whether an outlier is present. How-
ever, strictly speaking, the statistical test should be applied to all samples under examination to guarantee
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the significance levels used. Comments are made later concerning multiple tests for outliers in a single
sample since it changes the overall significance level.

A test equivalent to 7, (or 7)) based on the sample sum of squared deviations from the mean for all the
observations and the sum of squared deviations omitting the outlier is given by Grubbs in Ref. 9.

3-5.3 OUTLIER TEST FOR SMALLEST AND LARGEST OBSERVATIONS

The next type of problem to consider is the case in which there is the possibility of two outlying obser-
vations, i.e., the least and the greatest observations in a sample. (The problem of testing the two highest
or the two lowest observations is considered in par. 3-5.4.) To test the least and the greatest observations
simultaneously as probable outliers in a sample, we use the ratio of the sample range to the sample
standard deviation test of David, Hartley, and Pearson (Ref. 17). The significance levels for this sample
criterion are given in Table 3-3. Alternatively, the largest residuals test of Tietjen and Moore (Ref. 18)
could be used, as in par. 3-5.5.2. The procedure for the test of David, Hartley, and Pearson is explained
by Example 3-5.

Example 3-5:

There is one rather famous set of observations that a number of writers on the subject of outlying ob-
servations have referred to in applying their various tests for outliers. This classic set consists of a sample
of 15 observations of the vertical semidiameters of Venus made by Lieutenant Herndon in 1846 (Ref. 19).
In the reduction of the observations, the following residuals were found, which have been arranged in as-
cending order of magnitude:

—1.40in. —0.24 —0.05 0.18 0.48
—0.44 —0.22 0.06 0.20 0.63
-0.30 —0.13 0.10 0.39 1.01.

The deviations —1.40 and 1.01 appear to be outliers. Here the suspected observations lie at each end of
the sample. Much less work has been accomplished for the case of outliers at both ends of the sample
than for the case of one or more outliers at only one end of the sample. This is not necessarily because the
one-sided case occurs more frequently in practice but because two-sided tests are somewhat more difficult
with which to deal. For a high and a low outlier in a single sample, we give two procedures. The first is a
combination of tests, which includes the test of David, Hartley, and Pearson (Ref. 17). The second is a
single test of Tietjen and Moore (Ref. 18), discussed in par. 3-5.5.2, which may have nearly optimum:
properties.

For the observations on the semidiameter of Venus previously stated, all the information on the avail-
able measurement errors is contained in the sample of 15 residuals. In cases like this in which no inde-
pendent estimate of variance is available (i.e., we still have the single sample case), a useful statistic is the
ratio of the range of the observations to the sample standard deviation (David, Hartley, and Pearson, Ref.
17):

W I YL == (3-37)
s s
where
s is as in Eq. 3-33.

If x, were about as far above the mean x as x, is below ¥ and if w/s were to exceed the chosen critical
value from Table 3-3, one would conclude that both the doutful values could be outliers. If, however, x,
and x, were displaced from the mean by rather different amounts, then some further test would have to
be made to decide whether to reject as outlying only the lowest value, only the highest value, or both the
lowest and highest values.
For this example the mean of the residuals or deviations is ¥ = 0.018, the sample standard deviation s
= 0.551, and the David, Hartley, and Pearson statistic (Ref. 17) is
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TABLE 3-3

CRITICAL VALUES FOR w/s (RATIO OF RANGE TO SAMPLE
STANDARD DEVIATION)? (Ref. 17)

Number of 5% 1% 0.5%
Observations Significance Significance Significance
n Level Level Level
3 2.00 2.00 2.00
4 243 2.44 2.45
5 2.75 2.80 2.81
6 3.01 3.10 3.12
7 3.22 3.34 3.37
8 3.40 3.54 3.58
9 3.55 3.72 3.7
10 3.68 3.88 3.94
11 3.80 4.01 4.08
12 3.91 4.13 4.21
13 4.00 4.24 4.32
14 4.09 4.34 4.43
15 4.17 4.43 4.53
16 4.24 4.51 4.62
17 4.31 4.59 4.69
18 4.38 4.66 4.77
19 443 4.73 4.84
20 4,49 4.79 491
30 4.89 5.25 5.39
40 5.15 5.54 5.69
50 5.35 5.7 5.91
60 5.50 5.93 6.09
80 5.73 6.18 6.35
100 5.90 6.36 6.54
150 6.18 6.64 6.84
200 6.38 6.85 7.03
500 6.94 7.42 7.60
1000 7.33 7.80 7.99
WEXn— X, XIS <. ZXx,

s =VExi—%/(n—1)

Reprinted with permission. Copyright © by Biometrika Trustees.

101 —(—1.40) _ 241

wis = = 4.374.
0.551 0.551

From Table 3-3 for n = 15, we see that the value of w/s = 4.374 falls between the critical values for the 1
and 5% levels. If the test were being run at the 5% level of significance, we would conclude that this
sample contains one or more outliers. The lowest measurement, —1.40 in., is 1.418 below the sample
mean; the highest measurement, 1.01 in., is 0.992 above the mean. Since, however, these extremes are not
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symmetric about the mean, either both extremes are outliers, or only —1.40 is an outlier. That —1.40 is an

outlier can be verified by use of the T statistic of Eq. 3-34. We have from Eq. 3-34 that .
T i — _0.018 — (—1.40) — 5574
1= x)fs = 0.551 ol

This value is greater than the critical value of 2.409 from Table 3-1 for the 5% level; therefore, we should
look for the cause of this or reject ~1.40. Since we have decided that —1.40 is an outlier, we use the re-
maining 14 observations and test the upper extreme observation 1.01 either with the criterion (Eq. 3-32)

Xn =X
T, =

s

or with Dixon’s r,;. Omitting —1.40 and renumbering the observations, we compute

X = i4 = 0.119,5 = 0.401

and

_ 1.01-0.119 _
T, = 0401 = 2.22.

From Table 3-1 for n = 14 we find that a value as large as 2.22 would occur by chance more than 5% of

the time, so we should retain the value 1.01 in further calculations. For further information we calculate
Dixon’s

X14 — X102 1.01 —0.48 0.53

Xii—x,  101¥024 - 125 - 044 .

From Dixon’s Table 3-2 for n = 14, we see that the 5% critical value for r,, is 0.546. Since our calculated
value (0.424) is less than the critical value, we also retain 1.01 by Dixon’s test, and no further values
would be tested in this sample.

It should be noted that in a multiplicity of tests of this kind, the final, overall significance level will be
somewhat less than that used in the individual tests since we are offering more than one chance of accept-
ing the sample as one produced by a random operation.* It is not our purpose to cover the theory of mul-
tiple tests very extensively because it introduces a broad subject area although we will give some coverage
of multiple-type tests as required in pars. 3-5.5.2 and 3-5.5.3.

Finally, we should remark at this point that we have begun to reject some of the suspected outliers in
our examples. To many experimental investigators, the matter of just rejecting observations on statistical
grounds and depending on inferences from the remaining “statistically homogeneous” values “sounds a
very sour note” indeed. We agree that we must be very careful about rejecting observations, including
perhaps the outlying ones, unless we can very definitely establish that they are due to errors of measure-
ment, for example, and do not represent the true characteristics of the physical process we are sampling or
investigating. Actually, data are taken, hopefully, to make further inferences from our investigations or to
place our findings in a generalized framework. Thus we desire to estimate population means, standard
deviations, and other characteristics of the universe we are sampling, and the rejection of observations
will very definitely have an important effect on any such inferences. For this reason, we will discuss this
general and important problem later in more detail, but next we will address the problem of detecting
either two high or two low outliers especially before proceeding to tests for many outliers. Also we will re-
turn to Example 3-5 for further consideration relative to the so-far-retained value of 1.01. .

r2

*In Example 3-5 our resulting or overall significance level turns out to be very close to 90% and is not 95%.
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3.54 SIGNIFICANCE TESTS FOR THE TWO HIGHEST OR THETWO LOWEST
OBSERVATIONS

To detect whether the two largest or the two smallest observations are probable outliers, we employ a
test provided by Grubbs (Refs. 9, 10, 11, and 12). This test is based on the ratio of the sample SS when
the two doubtful values (two highest or two lowest) are omitted to the total sample SS when the two
doubtful values are included. If simplicity in calculation is the prime requirement, the Dixon type of test
(par. 3-5.2)—actually omitting one observation in the sample—might be used for this case also. In illus-
trating the test procedure, we will apply the theory to two examples.

Example 3-6:

In a comparison of strength of various plastic materials, one characteristic studied was the percentage
of elongation at break. Before comparison of the average elongation of the several materials, it seems de-
sirable to isolate for further study any pieces of a given material that gave very small elongation at break-
age compared with the rest of the pieces in the sample. In such an investigation one might have primary
interest only in outliers to the left of the mean for study since very high readings indicate exceeding plas-
ticity—a desirable characteristic.

Ten measurements of percentage of elongation at break made on Material No. 23 are 3.73, 3.59, 3.94,
4.13, 3.04, 2.22, 3.23, 4.05, 4.11, and 2.02.

Arranged in ascending order of magnitude, these measurements are 2.02, 2.22, 3.04, 3.23, 3.59, 3.73,
3.94, 4.05, 4.11, 4.13. The questionable readings are the two lowest, 2.02 and 2.22. We can test these two
low readings simultaneously by using the following criterion (Refs. 9, 10, 11, and 12).

S%’Z & Ll AT 2
— = (X~ X1,2)°) 2(xi — X) (3-38)
S i=3 =1

where for the numerator sum of squares the two lowest observations are omitted and
n
X1 = 2xi/(n = 2). (3-39)
=

If we were to test the significance of the two highest observations, clearly, the largest and next to largest
observations only would be truncated. See the equations at the bottom of Table 3-4.
For the 10 measurements the denominator S? of Eq. 3-38 is

n n._gx%' - (gn:Xi)z
SZ = ig} (xi —_ x——)Z = _'_I_I?Ll_— (3'40)

_10(121.3594) — (34.06)°
10

and for the truncated sample, using eight measurements,

= 5.351

(n— 2)§x2,~ — (%x,‘)2
=3 =3

SE=3(n—x02) = = (3-41)
’ i=3 n—>2
8(112.3506) — (29.82)°
=X )~ ( ) 1.197.
8
Thus we find by Eq. 3-38
S, 1.197
—=———=0224
S 5.351

3-21



DARCOM-P 706-103

TABLE 3-4
CRITICAL VALUES FOR S;f—n,n/S2 OR Slz,z/S2 FOR SIMULTANEOUSLY TESTING .
THE TWO LARGEST OR TWO SMALLEST OBSERVATIONS (Ref. 13)*

No. of Lower Lower Lower Lower Lower Lower
Obs. 0.1% Sig. 0.5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.
n Level Level Level Level Level Level
4 0.0000 0.0000 0.0000 0.0002 0.0008 0.0031
S 0.0003 0.0018 0.0035 0.0090 0.0183 0.0376
6 0.0039 0.0116 0.0186 0.0349 0.0564 0.0920
7 0.0135 0.0308 0.0440 0.0708 0.1020 0.1479
8 0.0290 0.0563 0.0750 0.1101 0.1478 0.1994
9 0.0489 0.0851 0.1082 0.1492 0.1909 0.2454
10 0.0714 0.1150 0.1414 0.1864 0.2305 0.2863
11 0.0953 0.1448 0.1736 0.2213 0.2667 0.3227
12 0.1198 0.1738 0.2043 0.2537 0.2996 0.3552
13 0.1441 0.2016 0.2333 0.2836 0.3295 0.3843
14 0.1680 0.2280 0.2605 0.3112 0.3568 0.4106
15 0.1912 0.2530 0.2859 0.3367 0.3818 0.4345
16 0.2136 0.2767 0.3098 0.3603 0.4048 0.4562
17 0.2350 0.2990 0.3321 0.3822 0.4259 0.4761
18 0.2556 0.3200 0.3530 0.4025 0.4455 0.4944
19 0.2752 0.3398 0.3725 04214 0.4636 0.5113
20 0.2939 0.3585 0.3909 0.4391 0.4804 0.5270
21 0.3118 0.3761 0.4082 0.4556 0.4961 0.5415
22 0.3288 0.3927 0.4245 0.4711 0.5107 0.5550
23 0.3450 0.4085 0.4398 0.4857 0.5244 0.5677
24 0.3605 0.4234 0.4543 0.4994 0.5373 0.5795
25 0.3752 0.4376 0.4680 0.5123 0.5495 0.5906
26 0.3893 0.4510 0.4810 0.5245 0.5609 0.6011
27 0.4027 0.4638 0.4933 0.5360 0.5717 0.6110
28 0.4156 0.4759 0.5050 0.5470 0.5819 0.6203
29 0.4279 0.4875 0.5162 0.5574 0.5916 0.6292
30 0.4397 0.4985 0.5268 0.5672 0.6008 0.6375
31 0.4510 0.5091 0.5369 0.5766 0.6095 0.6455
32 0.4618 0.5192 0.5465 0.5856 0.6178 0.6530
33 0.4722 0.5288 0.5557 0.5941 0.6257 0.6602
34 0.4821 0.5381 U.5646 0.6023 0.6333 0.6671
35 0.4917 0.5469 0.5730 0.6101 0.6405 0.6737
36 0.5009 0.5554 0.5811 0.6175 0.6474 0.6800

(cont’d on next page)

2 _ -_12Z
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* A calculated ratio less than the appropriate critical ratio in this table calls for rejection of the null hypothesis.
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TABLE 3-4 (cont’d)

No. of Lower Lower Lower Lower Lower Lower
Obs. 0.1% Sig. 0.5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.
n Level Level Level Level Level Level
37 0.5098 0.5636 0.5889 0.6247 0.6541 0.6860
38 0.5184 0.5714 0.5963 0.6316 0.6604 0.6917
39 0.5266 0.5789 0.6035 0.6382 0.6665 0.6972
40 0.5345 0.5862 0.6104 0.6445 0.6724 0.7025
41 0.5422 0.5932 0.6170 0.6506 0.6780 0.7076
42 0.5496 0.5999 0.6234 0.6565 0.6834 0.7125
43 0.5568 0.6064 0.6296 0.6621 0.6886 0.7172
44 0.5637 0.6127 0.6355 0.6676 0.6936 0.7218
45 0.5704 0.6188 0.6412 0.6728 0.6985 0.7261
46 0.5768 0.6246 0.6468 0.6779 0.7032 0.7304
47 0.5831 0.6303 0.6521 0.6828 0.7077 0.7345
48 0.5892 0.6358 0.6573 0.6876 0.7120 0.7384
49 0.5951 0.6411 0.6623 0.6921 0.7163 0.7422
50 0.6008 0.6462 0.6672 0.6966 0.7203 0.7459
51 0.6063 0.6512 0.6719 0.7009 0.7243 0.7495
52 0.6117 0.6560 0.6765 0.7051 0.7281 0.7529
53 0.6169 0.6607 0.6809 0.7091 0.7319 0.7563
54 0.6220 0.6653 0.6852 0.7130 0.7355 0.7595
55 0.6269 0.6697 0.6894 0.7168 0.7390 0.7627
56 0.6317 0.6740 0.6934 0.7205 0.7424 0.7658
57 0.6364 0.6782 0.6974 0.7241 0.7456 0.7687
58 0.6410 0.6823 0.7012 0.7276 0.7489 0.7716
59 0.6454 0.6862 0.7049 0.7310 0.7520 0.7744
60 0.6497 0.6901 0.7086 0.7343 0.7550 0.7772
61 0.6539 0.6938 0.7121 0.7375 0.7580 0.7798
62 0.6580 0.6975 0.7155 0.7406 0.7608 0.7824
63 0.6620 0.7010 0.7189 0.7437 0.7636 0.7850
64 0.6658 0.7045 0.7221 0.7467 0.7664 0.7874
65 0.6696 0.7079 0.7253 0.7496 0.7690 0.7898
66 0.6733 0.7112 0.7284 0.7524 0.7716 0.7921
67 0.6770 0.7144 0.7314 0.7551 0.7741 0.7944
68 0.6805 0.7175 0.7344 0.7578 0.7766 0.7966
69 0.6839 0.7206 0.7373 0.7604 0.7790 0.7988
70 0.6873 0.7236 0.7401 0.7630 0.7813 0.8009
71 0.6906 0.7265 0.7429 0.7655 0.7836 0.8030
72 0.6938 0.7294 0.7455 0.7679 0.7859 0.8050
73 0.6970 0.7322 0.7482 0.7703 0.7881 0.8070
74 0.7000 0.7349 0.7507 0.7727 0.7902 0.8089
75 0.7031 0.7376 0.7532 0.7749 0.7923 0.8108
76 0.7060 0.7402 0.7557 0.7772 0.7944 0.8127
77 0.7089 0.7427 0.7581 0.7794 0.7964 0.8145
78 0.7117 0.7453 0.7605 0.7815 0.7983 0.8162
79 0.7145 0.7477 0.7628 0.7836 0.8002 0.8180
80 0.7172 0.7501 0.7650 0.7856 0.8021 0.8197
81 0.7199 0.7525 0.7672 0.7876 0.8040 0.8213
82 0.7225 0.7548 0.769%4 0.7896 0.8058 0.8230
83 0.7250 0.7570 0.7715 0.7915 0.8075 0.8245
84 0.7275 0.7592 0.7736 0.7934 0.8093 0.8261
85 0.7300 0.7614 0.7756 0.7953 0.8109 0.8276

(cont’d on next page)
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TABLE 3-4 (cont’d)

No. of Lower Lower Lower Lower Lower Lower
Obs. 0.1% Sig. 0.5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.
n Level Level Level Level Level Level
86 0.7324 0.7635 0.7776 0.7971 0.8126 0.8291
87 0.7348 0.7656 0.7796 0.7989 0.8142 0.8306
88 0.7371 0.7677 0.7815 0.8006 0.8158 0.8321
89 0.7394 0.7697 0.7834 0.8023 0.8174 0.8335
90 0.7416 0.7717 0.7853 0.8040 0.8190 0.8349
91 0.7438 0.7736 0.7871 0.8057 0.8205 0.8362
92 0.7459 0.7755 0.7889 0.8073 0.8220 0.8376
93 0.7481 0.7774 0.7906 0.8089 0.8234 0.8389
94 0.7501 0.7792 0.7923 0.8104 0.8248 0.8402
95 0.7522 0.7810 0.7940 0.8120 0.8263 0.8414
96 0.7542 0.7828 0.7957 0.8135 0.8276 0.8427
97 0.7562 0.7845 0.7973 0.8149 0.8290 0.8439
98 0.7581 0.7862 0.7989 0.8164 0.8303 0.8451
99 0.7600 0.7879 0.8005 0.8178 0.8316 0.8463
100 0.7619 0.7896 0.8020 0.8192 0.8329 0.8475
101 0.7637 0.7912 0.8036 0.8206 0.8342 0.8486
102 0.7655 0.7928 0.8051 0.8220 0.8354 0.8497
103 0.7673 0.7944 0.8065 0.8233 0.8367 0.8508
104 0.7691 0.7959 0.8080 0.8246 0.8379 0.8519
105 0.7708 0.7974 0.8094 0.8259 0.8391 0.8530
106 0.7725 0.7989 0.8108 0.8272 0.8402 0.8541
107 0.7742 0.8004 0.8122 0.8284 0.8414 0.8551
108 0.7758 0.8018 0.8136 0.8297 0.8425 0.8563
109 0.7774 0.8033 0.8149 0.8309 0.8436 0.8571
110 0.7790 0.8047 0.8162 0.8321 0.8447 0.8581
111 0.7806 0.8061 0.8175 0.8333 0.8458 0.8591
112 0.7821 0.8074 0.8188 0.8344 0.8469 0.8600
113 0.7837 0.8088 0.8200 0.8356 0.8479 0.8610
114 0.7852 0.8101 0.8213 0.8367 0.8489 0.8619
115 0.7866 0.8114 0.8225 0.8378 0.8500 0.8628
116 0.7881 0.8127 0.8237 0.8389 0.8510 0.8637
117 0.7895 0.8139 0.8249 0.8400 0.8519 0.8646
118 0.7909 0.8152 0.8261 0.8410 0.8529 0.8655
119 0.7923 0.8164 0.8272 0.8421 0.8539 0.8664
120 0.7937 0.8176 0.8284 0.8431 0.8548 0.8672
121 0.7951 0.8188 0.8295 0.8441 0.8557 0.8681
122 0.7964 0.8200 0.8306 0.8451 0.8567 0.8689
123 0.7977 0.8211 0.8317 0.8461 0.8576 0.8697
124 0.7990 0.8223 0.8327 0.8471 0.8585 0.8705
125 0.8003 0.8234 0.8338 0.8480 0.8593 0.8713
126 0.8016 0.8245 0.8348 0.8490 0.8602 0.8721
127 0.8028 0.8256 0.8359 0.8499 0.8611 0.8729
128 0.8041 0.8267 0.8369 0.8508 0.8619 0.8737
129 0.8053 0.8278 0.8379 0.8517 0.8627 0.8744
130 0.8065 0.8288 0.8389 0.8526 0.8636 0.8752
131 0.8077 0.8299 0.8398 0.8535 0.8644 0.8759
132 0.8088 0.8309 0.8408 0.8544 0.8652 0.8766
133 0.8100 0.8319 0.8418 0.8553 0.8660 0.8773
134 0.8111 0.8329 0.8427 0.8561 0.8668 0.8780
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TABLE 3-4 (cont’d)

No. of Lower Lower Lower Lower Lower Lower
Obs. 0.1% Sig. 0.5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.
n Level Level Level Level Level Level
135 0.8122 0.8339 0.8436 0.8570 0.8675 0.8787
136 0.8134 0.8349 0.8445 0.8578 0.8683 0.8794
137 0.8145 0.8358 0.8454 0.8586 0.8690 0.8801
138 0.8155 0.8368 0.8463 0.8594 0.8698 0.8808
139 0.8166 0.8377 0.8472 0.8602 0.8705 0.8814
140 0.8176 0.8387 0.8481 0.8610 0.8712 0.8821
141 0.8187 0.8396 0.8489 0.8618 0.8720 0.8827
142 0.8197 0.8405 0.8498 0.8625 0.8727 0.8834
143 0.8207 0.8414 0.8506 0.8633 0.8734 0.8840
144 0.8218 0.8423 0.8515 0.8641 0.8741 0.8846
145 0.8227 0.8431 0.8523 0.8648 0.8747 0.8853
146 0.8237 0.8440 d 0.8531 0.8655 0.8754 0.8859
147 0.8247 0.8449 0.8539 0.8663 0.8761 0.8865
148 0.8256 0.8457 0.8547 0.8670 0.8767 0.8871
149 0.8266 0.8465 0.8555 0.8677 0.8774 0.8877

Reprinted with permission. Copyright © by the American Statistical Association.

From Table 3-4 for n = 10, the 5% significance level for S7,/S” is 0.2305. A calculated ratio less than the
appropriate critical ratio in this table calls for rejection of the null hypothesis. Since the calculated value is
. less than the critical value, we conclude that both 2.02 and 2.22 are outliers.

In a situation such as the one described in this example, where the outliers are to be isolated for further
analysis, a significance level as high as 5% or perhaps even 10% would probably be used to get a reason-
able number of sample items for additional study. The problem may really be one of economics, and we
should therefore use appropriate probability theory as a sensible basis for action.

Kudo (Ref. 19) indicates that if the two outliers are due to a shift in location or level, as compared to
the scale s, then the optimum sample criterion for testing should be of the type

min(2X — x; — x;)/s = (2% — x1 — x2)/s (3-42)

in our Example 3-6.

In Example 3-7 we give an example in ballistics for which short-range rounds may be due to excessive
projectile yaw, i.e., some explainable physical meaning.

Example 3-7:

The following ranges (horizontal distances measured in yards from gun muzzle to point of ground im-
pact of a projectile) were obtained in firings from a weapon at a constant angle of elevation and with the
same weight of charge of propellant:

4782 4420
4838 4803
4765 4730
4549 4833.

We desire to make a judgment on whether the projectiles exhibit uniformity in ballistic behavior or
whether some of the ranges are inconsistent. The doubtful values are the two smallest ranges, 4420 and

. 4549 yd. For testing these two suspected outliers, the statistic S2,,/S? of Eq. 3-38 and Table 3-4 is prob-
ably the best to use.
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The distances, arranged in increasing order of yards or magnitude, are

4420 4732
4549 4803
4730 4833
4765 4838.

The value of S$? from Eq. 3-40 is 158,592. Omission of the two shortest ranges, 4420 and 4549, and re-
calculation for the remaining SS gives S?,, from Eq. 3-41 equal to 8590.8. Thus

St, _ 8590.8
Sz 158,592

0.054

which is significant at the 0.01 level. (See Table 3-4.) Therefore, it appears highly unlikely that the two
shortest ranges—actually occurring from excessive yaw-—could have come from the same population as
that represented by the other six ranges for the projectiles. It should be noted that the critical values in
Table 3-4 for the 1% level of significance are smaller than those for the 5% level. So for this particular test,
we should keep in mind that the calculated value is significant if it is less than the chosen critical value.

If simplicity in calculation is desired or if a large number of samples must be examined individually for
outliers, the questionable observations may be tested with the application of Dixon’s criteria. Disregard-
ing only the lowest range, 4420, and reducing the sample size to seven, we test whether the next lowest
range, 4549, is outlying. With n = 7 we see from Table 3-2 that | is the appropriate statistic. Renumber-
ing the ranges as x; to x;, beginning with 4549, we find:

 xy—x, _ 4730—4549
no = — 35— = Zg3g—as49 = 0626

which is only a little less than the 1% critical value, 0.637, for n = 7. So, if the test is being conducted at
any significance level greater than a 1% level, we would conclude that 4549 is an outlier. Since the lowest
of the original set of ranges, 4420, is even more outlying than the one we have just tested, it can be classi-
fied as an outlier without further testing. We note, however, that this test did not use all of the sample ob-
servations.

3-5.5 SIGNIFICANCE TEST FOR DETECTING SEVERAL OR MANY OUTLIERS
3-5.5.1 Preliminary Comments

Although the procedures previously given for detecting a single outlier in a sample have been rather
widely studied over the years and have been found to possess about as much power as possible, the prob-
lem of detecting several outliers appears to call for much more research. In fact, we commented earlier
(par. 3-5.3) that in using the ratio of sample range to standard deviation test to judge whether the largest
and smallest observations simultaneously are outliers, one invariably finds that a very satisfactory and
clear-cut procedure for rejecting the two extreme values or either one of them is not available without
further testing. Thus it appears that tests involving possible outliers on both sides of the sample mean may
need much additional study; this applies to several outliers on only one side of the sample mean as well.
Indeed, this trend of investigation has been followed in recent years by Tietjen and Moore (Ref. 18),
Rosner (Ref. 20), Hawkins (Ref. 21), and others. In view of the analytical complexity involved in the
overall problem, much of the statistical research in this area must of necessity resort to Monte Carlo-type
simulations to obtain answers, at least for the present time.

3-5.5.2 The Tietjen and Moore Tests

For suspected observations on both the high and iow sides in the sample and to deal with the situation
in which some of kK = 2 suspected “‘outliers” are larger and some smaller than the remaining values in the
samiple, Tietien and Moore (Ref. 18) suggested the type of statistic that follows. Let the ordered sample
values be xi, x3, x3, . . ., x», 2and compute the sample mean X. Then calculate the n absolute residuals r;
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=lxi—xl,n=lx2—X|,..., rm=|x»—X| (3-43)

where the sample mean X for the whole, original sample is used. Now relabel the original observations x|,
X2, .. . X, as z’s in such a manner that z, is that original observation x whose r; is the ith ordered (in-
creasing) absolute residual given by Eq. 3-43: This now means that z, is that observation x closest to the
mean and that z, is the observation x farthest from the mean. The Tietjen-Moore (Ref. 18) statistic Ex for
testing the significance of the k largest residuals is then

n—k
2 (zi— z)’

Er= —— (3-44)
% (zi— 2)*

where -
= %zi/(n - k)

= mean of the (n — k) least extreme observations

(3-45)

z = mean of the full sample.

The null distribution percentage points of Ex for the two-sided Tietjen-Moore significance test (Ref.
18)—computed by Monte Carlo methods on a high-speed electronic calculator—are given in Table 3-5.

Example 3-8:

Apply the Tietjen-Moore test to the data of Example 3-5 to see whether —1.40 and 1.01 are outliers. We
find that the total sum of squares of deviations for the entire sample is 4.24964. Omitting —1.40 and 1.01,
the suspected two or largest residual “outliers”, we find that the sum of squares of deviations for the re-
duced sample of 13 observatlons is 1.24089. From Eq. 3-44 the Tietjen-Moore E; = 1.24089/4.24964 =
0.292. Using Table 3-5"we find that this observed E, is somewhat smaller than the 5% critical value of
0.317, so that the E; test would reject both of the observations, —1.40 and 1.01. Thus we would probably
lean toward taking this latter recommendation since the level of significance for the E, test is precisely
0.05, whereas that for the double application of tests for a single outlier, as we carried out in Example 3-5,
is greater than 0.05 but less than 1 — (0.95)> = 0.0975. Also we will check this decision to reject —1.40 and
1.01 with the aid of the Rosner (Ref. 20) and Hawkins (Ref. 21) tests in Example 3-9 of par. 3-5.5.3.

Tietjen and Moore (Ref. 18) have also developed tests for suspected outliers on only one side of the
sample mean. These are referred to as the Lx Tests of Significance, for the k largest sample values sus-
pected, where

n—k n
u=gm—mﬁgm—@2 (3-46)
and
n-k
Xk = Elxi/(n - k) (3'47)

A similar, obvious test for the k& smallest suspected sample values is also used by Tietjen and Moore by
deletion of these k lowest values in the numerator. Note that the Tietjen-Moore L, for either the two
highest or two lowest sample values is precisely the S;,-1/S” or S{2/S* of Grubbs (Refs. 9, 10, 11, and 12),
which is discussed in par. 3-5.4. The Lk percentage points of Tietjen and Moore also were calculated by
means of Monte Carlo runs on a high-speed computer and are given in Table 3-6%. Again, the columns
headed with an** indicate the agreement of the Tietjen-Moore Monte Carlo simulations with the exact
theoretical percentage points calculated by Grubbs in 1950 for L, and L, only. Theory fork = 3 apparent-

*If the calculated ratio is less than the appropriate ratio given in Table 3-5, the values are rejected as outliers.
t1f the calculated ratio is less than the appropriate ratio given in Table 3-6, the values are rejected as outliers.
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TABLE 3-5
CRITICAL VALUES FOR E:* (Ref. 18)
a =0.01
n\k 1 2 3 4 5 6 7 8 9 10

3 0.000

4 0.004 0.000

5 0.029 0.002

6 0.068 0.012 0.001

7 0.110 0.028 0.006

8 0.156 0.050 0.014 0.004

9 0.197 0.078 0.026 0.009

10 0.235 0.101 0.037 0.013

11 0274 0.134 0.064 0.030 0.012

12 0.311 0.159 0.083 0.042 0.020 0.008

13 0.337 0.181 0.103 0.056 0.031 0.014

14 0.374 0.207 0.123 0.072 0.042 0.022 0.012

15 0404 0.238 0.146 0.090 0.054 0.032 0.018

16 0422 0.263 0.166 0.107 0.068 0.040 0.024 0.014

17 0.440 0.290 0.188 0.122 0.079 0.052 0.032 0.018

18 0459 0.306 0.206 0.141 0.094 0.062 0.041 0.026 0.014

19 0484 0323 0.219 0.156 0.108 0.074 0.050 0.032 0.020

20 0.499 0.339 0.236 0.170 0.121 0.086 0.058 0.040 0.026 0.017

25 0.571 0.418 0.320 0.245 0.188 0.146 0.110 0.087 0.066 0.050

30 0.624 0482 0.386 0.308 0.250 0.204 0.166 0.132 0.108 0.087

35 0.669 0.533 0435 0364 0.299 0252 0211 0.177 0.149 0.124

40 0704 0.574 0.480 0408 0.347 0.298 0.258 0.220 0.190 0.164

45 0.728 0.607 0.518 0446 0.386 0.336 0.294 0.258 0.228 0.200

50 0.748 0.636 0.550 0.482 0.424 0376 0.334 0.297 0.264 0.235
(cont’d on next page)

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers.

ly has not been worked out and likely would be very difficult although the Monte Carlo values may cer-
tainly be trusted for general use. There is no point in checking the outliers found in Examples 3-6 and 3-7
with the Tietjen-Moore L, since that test is equivalent to the one already used.

A point in favor of the Tietjen-Moore type tests is that they clearly cut down or even eliminate the need
for and use of several, or multiple, outlier tests.

3-5.5.3 The Rosner and Hawkins Multiple Outlier Detection Procedures

While the Tietjen-Moore procedures for detecting outliers in samples have been valuable in many ex-
perimental situations, there have been some improvements since the publication of their paper in 1972
(Ref. 18), especially for the Ex procedure and the rankings called for in Eq. 3-43. In fact, one notes from
Eq. 3-43 that all of the rankings of the r; are based on the original sample mean X although it seems more
intuitively powerful after finding an outlier to delete that observation from any further consideration and
proceed to test the remaining sample values. The point is that an ‘outlier used in the calculation of the
sample mean, which is always used in the Tietjen-Moore ranking of Ref. 18, might even mask a second
outlier and result in the conclusion that this second outlier is an “inlier’”” or a perfectly acceptable homo-
geneous value. This apparently is underlying thoughts of Rosner (Ref. 20) and Hawkins (Ref. 21), and in-
deed Hawkins (Ref. 21) gives an excellent example to point up this difficulty. Hawkins (Ref. 21) suggests
consideration of a sample of n = 10 items for which the largest observation x, = 100, the next largest or
xn1 = 10, and the remaining observations of the sample are from N(0,1), i.e., a normal universe with
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TABLE 3-5 (cont’d)
o = 0.05*

n\k 1 fleEs 2 3 4 5 6 7 8 9 10

0.001 0.001

0.025 0.025 0.001

0.081 0.081 0.010

0.146 0.145 0.034 0.004

0.208 0.207 0.065 0.016

0.265 0.262 0.099 0.034 0.010

9 0314 0310 0.137 0.057 0.021

10 035 0.352 0.172 0.083 0.037 0.014

11 0386 0.390 0.204 0.107 0.055 0.026

12 0424 0423 0.234 0.133 0.073 0.039 0.018

13 0455 0453 0.262 0.156 0.092 0.053 0.028

14 0484 0479 0293 0.179 0.112 0068 0.039 0.021

15 0.509 0.503 0.317 0.206 0.134 0.084 0.052 0.030

16 0.526 0.525 0.340 0.227 0.153 0.102 0.067 0.041 0.024

17 0.544 0.544 0.362 0.248 0.170 0.116 0.078 0.050 0.032

18 0.562 0.562 0.382 0.267 0.187 0.132 0.091 0.062 0.041 0.026

19 0.581 0.579 0.398 0.287 0.203 0.146- 0.105 0.074 0.050 0.033

20 0.597 0.594 0416 0.302 0.221 0.163 0.119 0.085 0.059 0.041 0.028
25 0.652 0.654 0493 0.381 0.298 0.236 0.186 0.146 0.114 0.089 0.068

o0~ O\ W\ W

30 0.698 0.549 0.443 0364 0.298 0.246 0203 0.166 0.137 0.112
35 0.932 0.596 0495 0.417 0.351 0.298 0.254 0.214 0.181 0.154
40 0.758 0.629 0.534 0.458 0.395 0.343 0.297 0.259 0.223 0.195
45 0.778 0.658 0.567 0.492 0.433 0.381 0.337 0.299 0.263 0.233
50 0.797 0.684 0.599 0.529 0.468 0417 0373 0334 0.299 0.268

(cont’d on next page)

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers.

**Erom Grubbs, Table I, Ref. 9. Note in this connection that the Tietjen-Moore Monte Carlo values of Ref, 18 check the Grubbs
theoretical 0.05 probability levels of Ref. 9.

mean of zero and standard deviation of unity. Hawkins then points out that the two largest values, 100
and 10 are truly outliers, whereas the original sample mean X is about 11, which perhaps brands the value
10 as an inlier. That is to say, the Tietjen-Moore tests (E or L) would test x, = x;, = 100 correctly but
would sometimes miss the outlier x,-1= x, = 10 by finally testing the algebraically largest of the remaining
eight values, one or more of which on occasion would exceed the x, = 10.

In 1975 Rosner (Ref. 20) made a rather significant advance in the problem of detecting multiple outliers
in a sample by attempting to get away from testing for a prefixed or specified number of outliers, i.e.,
developing a more flexible procedure to detect from one to k outliers and yet keep the significance level
fixed at . The chief advantage of the Rosner approach is that it should be powerful enough to detect any
number of outliers up to [pn], where p is some fraction of the total sample size, and not lose much power
against an alternative of a specified number of outliers. Conversely, as Rosner points out, any outlier de-
tection test that is geared to finding a specific number of aberrant values can be much less powerful in de-
tecting any other number of deviant sample observations. Indeed, the number of outliers to expect in ad-
vance is hardly ever known, and there is the obvious need to apply a routine rule for any possible number
of outliers that may actually be in the sample rather than first trying to guess the correct number by
simply observing the data and then using a rule that is good against that particular number of outliers.
This means that the Type I error, or «, must be controlled at its present level throughout the sequential
testing for as many as k outliers. Rosner’s procedure (Refs. 20 and 22) is to employ a set of R statistics, or
“RST” multiple outlier tests, as he calls them. Rosner (Refs. 20 and 22) decides in advance that he will
test a sample of observations for up to as many as k outliers. The number k is in fact rather arbitrary and
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TABLE 3-5 (cont’d)
a = 0.10%

n\k 1 Jek 2 3 4 5 6 7 8 9 10

3 0.003 0.003

4 0.050 0.049 0.002

5 0.127 0.127 0.022

6 0.204 0.203 0.056 0.009

7 0268 0.270 0.094 0.027

8 0328 0.326 0.137 0.053 0.016

9 0377 0.374 0.175 0.080 0.032

10 0420 0415 0.214 0.108 0.052 0.022

11 0.449 0451 0.250 0.138 0.073 0.036

120485 0.482 0.278 0.162 0.094 0.052 0.026

13 0510 0.510 0.309 0.189 0.116 0.068 0.038

14 0538 0.534 0337 0.216 0.138 0.086 0.052 0.029

15 0.558 0.556 0.360 0.240 0.160 0.105 0.067 0.040

16 0.578 0.576 0384 0263 0.182 0.122 0.082 0.053 0.032

17 0594 0.593 0.406 0284 0.198 0.140 0.095 0.064 0.042

18 0.610 0.610 0.424 0304 0.217 0.156 0.110 0.076 0.051 0.034

19 0.629 0.624 0.442 0.322 0.234 0.172 0.124 0.089 0.062 0.042

20 0.644 0.638 0460 0.338 0.252 0.188 0.138 0.102 0.072 0.051 0.035
25 0.693 0.692 0.528 0417 0.331 0264 0210 0.168 0.132 0.103 0.080

30 0.730 0.582 0475 0.391 0.325 0.270 0.224 0.186 0.154 0.126
35 0.763 0.624 0.523 0443 0379 0.324 0276 0.236 0.202 0.172
40 0.784 0.657 0.562 0.486 0.422 0.367 0.320 0.278 0.243 0.212
45 0.803 0.684 0.593 0.522 0459 0406 0360 0.320 0.284 0.252
50 0.820 0.708 0.622 0.552 0.492 0440 0.396 0.355 0.319 0.287

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers.

**From Grubbs, Table I, Ref. 9. Note in this connection that the Tietjen-Moore Monte Carlo values of Ref. 18 check the Grubbs
theoretical 0.10 probability levels of Ref. 9.

Reprinted with permission. Copyright © by the American Statistical Association.

is used to “‘lop off” or trim the k largest and k smallest observations from the sample so that only an in-
ner sample having no outliers remains and provides a “trimmed” reference sample for a “*safe’” mean and
sigma. He then calculates the trimmed mean a and trimmed variance b2 for the remaining sample values,
or the inliers, which are

n—k
a= '_kZHx,-/(n — 2k) = trimmed mean (3-48)
n—k
b*= 3 (x;—a)’/(n — 2k — 1) = trimmed variance. (3-49)

k+1

Rosner (Refs. 20 and 22) then calculates the largest studentized residual in absolute value R, for the entire
sample, but he uses a and b instead of the ¥ and s of the whole sample. Thus the observed value of R, is
calculated as

Ry = max|x;—a|/b=|x" — a|/b (3-50)

where
x'" = particular value that makes R, a maximum.

The calculated value of R is tested statistically against a percentage point or probability level computed
by Rosner for R, by Monte Carlo methods. Thus the value x'"', which will turn out to be the farthest
value from the trimmed mean, is then branded either an outlier or not, but if judged an outlier, it is not
considered in the computation of the next studentized residual R,.
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TABLE 3-6
CRITICAL VALUES FOR L} (Ref. 18)
o = 0.01
n\k 1 X 2 Q¥ %% 3 4 5 6 7 8 9 10

0.000 0.000

0011 0.010 0.000 0.000

0.045 0.044 0.004 0.004

0.091 0.093 0.021 0.019 0.002

0.148 0.145 0.047 0.044 0.010

0202 0.195 0.076 0.075 0.028 0.008

0235 0.241 0.112 0.108 0.048 0.018

10 0280 0.283 0.142 0.141 0.070 0.032 0012

110327 0321 0.178 0.174 0.098 0.052 0.026

120371 0355 0208 0.204 0.120 0.070 0038 0.019

130400 0386 0233 0233 0.147 0.09 0056 0.033

14 0424 0414 0267 0261 0.172 0.113 0072 0042 0.027

15 0450 0.440 0.294 0286 0.194 0.132 0.090 0.057 0.037

16 0473 0.463 0311 0310 0219 0.151- 0.108 0.072 0.049 0.030
170480 0485 0338 0.332 0237 0.071 0126 0.09] 0.064 0.044

18 0502 0.504 0358 0.353 0.260 0.192 0.140 0.104 0.076  0.053 0.036
190508 0522 0366 0373 0272 0201 0.154 0.118 0.088 0.064 0.046
20 0533 0539 0387 0391 0300 0231 0175 0.136 0.104 0.078 0.058 0.042

O 00~ O\ W

25 0.607 0.468 0.377 0308 0.246 0.204 0.168 0.144 0.112 0.092
30 0.650 0.527 0.434 0369 0312 0.268 0229 0.196 0.166 0.142
35 0.690 0.573 0.484 0418 0364 0321 0.282 0.250 0220 0.194
40 0.722 0.610 0.522 0460 0.408 0.364 0.324 0292 0262 0.234
45 0.745 0.641 0.558 0498 0444 0399 0361 0.328 029 0.270
50 0.768 0.667 0.592 0531 0483 0438 0400 0.368 0336 0.308

(cont’d on next page)
*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers.
**From Grubbs, Table I, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values.
***From Grubbs, Table V., Ref. 9. Use instead of Tietjen-Moore Monte Carlo values.

If x(V is discardable, the same trimmed mean @ and trimmed standard deviation & are used to calculate
R, the next RST given by

Ry =max |x; — a|/b=|x? — q|/b (3-51)
Xi
where
x? = particular subsample value that makes R, a maximum.

The sample values tested do not include x'", The process is continued through Rs, etc., to Ry, stopping there or
before. In effect, therefore, the Rosner outlier test procedure is sequential in nature and calls for multiple
significance tests. This means that a series of calculations is necessary, and the determination of an outlier has
to be made at each testing stage.

Rosner (Ref. 20) works with the marginal distributions of Ry, R,, . . ., and R, to determine specifically

tne values of 8, the correct probability level at each stage, and the percent points A(8), A2(fB), . . ., A(B)
such that

PriR>NBI=R8, i=1,... k (3-52)
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TABLE 3-6 (cont’d)
a = 0.025*

n\k 1 1** 2 2%k 3 4 5 6 7 8 9 10

0.001 0.001 0.000 0.000

0.025 0.025 0.000 0.000

0.084 0.081 0011 0.009

0.146 0.145 0.034 0.035 0.005

0.209 0.207 0.076 0.071 0.021

0.262 0.262 0.1i5 0.110 0.045 0.013

0.308 0.310 0.150 0.149 0.073 0.030

10 0.350 0.353 0.188 0.187 0.100 0.052 0.023

11 0366 039 0.225 0221 0.129 0.074 0.040

12 0440 0423 0.268 0.254 0.162 0.096 0.057 0.031

13 0462 0453 0.292 0.284 0.184 0.122 0.077 0.047

14 0493 0479 0.317 0311 0214 0.145 0.098 0.063 0.038

15 0.498 0503 0.341 0.337 0.239 0.167 0.111 0.078 0.051

16 0.537 0.525 0.372 0360 0.261 0.185 0.137 0.096 0.065 0.045

17 0.552 0.544 0.388 0382 0.282 0.208 0.156 0.117 0.082 0.058

18 0.570 0.562 0.406 0.403 0299 0.226 0.171 0.129 0.095 0.068 0.048
19 0.573 0.579 0416 0421 0311 0.243 0.189 0.145 0.108 0.080 0.059
20 0.595 0.594 0.442 0439 0341 0.265 0.209 0.165 0.128 0.098 0.073 0.054

Nl L RN R R

25 0,654 0.512 0.417 0342 0.282 0.233 0.192 0.159 0.132 0.113
30 0.699 0.567 0.479 0.408 0352 0.302 0261 0.226 0.193 0.165
35 0.732 0.610 0.527 0.455 0.398 0.348 0.308 (274 0242 0.213
40 0.755 0.644 0.561 0.491 0.433 0387 0348 0314 0283 0.257
45 0.773 0.667 0.592 0.529 0.473 0430 0.391 0.35 0.325 0.295
50 0.796 0.697 0.622 0.559 0.510 0466 0.428 0.392 0.363 0.334

(cont’d on next page)

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers.
**From Grubbs, Table I, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values.
**xFrom Grubbs, Table V, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values.

and the union U of all these sets gives also
k
Pr { yl[Ri >\ (B)]} = a. (3-53)

Rosner (Ref. 22) then establishes the percentage points \(B) for the R: with increasing i = 1, 2, 3, 4,
etc. Such investigations, including especially the power of the detection procedures to reject false null hy-
potheses, must be made through the means of Monte Carlo-type simulations, which aided Rosner in com-
ing to the following conclusions. He found that the one-outlier detection procedures were slightly more
powerful in detecting a single outlier than the several or many outlier detection rules were. However, such
advantage seems to be rather slight when compared with the substantial increase in power obtained for
the alternative of two or more outliers, particularly when the outliers are on the same side of the mean.
The greatest improvement in power for the many outlier detection rules was for the case of multiple out-
liers on one side of the sample mean, as in the example of Hawkins previously cited. Rosner (Ref. 20)
therefore concludes positively that the many outlier detection procedures are preferable to their one-
outlier counterparts, particularly if all of the outliers are on the same side of the sample mean. Moreover,
by using a multiple outlier detection procedure, instead of a single outlier rule, one tends to give up some
power against the alternative of one actual outlier (probably at most 10% depending on the alternative),
however, one gains much more power against alternatives of several outliers, and as much as 50% for al-
ternatives where the real outliers are on the same side of the sample mean. Even though one has to give
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TABLE 3-6 (cont’d)
a = 0.05*

n\k 1 | 2 2%%% 3 4 5 6 7 8 9 10

0.003 0.003

0.051 0.049 0.001 0.001

0.125 0.127 0.018 0.018

0.203 0.203 0.055 0.057 0.010

0.273 0.270 0.106 0.102 0.032

0.326 0326 0.146 0.148 0.064 0.022

0372 0.374 0.194 0.191 0.099 0.045

10 0418 0.415 0233 0.230 0.129 0.070 0.034

11 0.454 0451 0270 0.267 0.162 0.098 0.054

120489 0482 0.305 0300 0.196 0.125 0.076 0.042

130517 0510 0.337 0330 0.224 0.150 0.098 0.060

14 0540 0.534 0.363 0357 0.250 0.174 0.122 0.079 0.050

15 0.556 0.556 0.387 0.382 0.276 0.197 0.140 0.097 0.066

16 0.575 0.576 0.410 0.405 0300 0219 0.159 0.115 0.082 0.055

17 0594 0.593 0427 0426 0322 0.240 0.181 0.136 0.100 0.072

18 0.608 0.610 0.447 0446 0.337 0.259 0200 0.154 0.116 0.086 0.062
19 0.624 0.624 0462 0464 0.354 0.277 0209 0.168 0.130 0.099 0.074
20 0.639 0.638 0.484 0480 0.377 0299 0.238 0.188 0.150 0.115 0.088 0.066

O 00~ N oW

25 0.696 0.692 0.550 0.450 0374 0.312 0262 0.222 0.184 0.154 0.126
30 0.730 0.601 0.506 0.434 0376 0.327 0.283 0.245 0212 0.183
35 0.762 0.641 0.554 0482 0424 0376 0334 0.297 0264 0.235
40 0.784 0.673 0.588 0.523 0.468 0421 0378 0.342 0310 0.280
45  0.802 0.698 0.618 0.556 0.502 0456 0.417 0382 0350 0.320
50  0.820 0.720 0.646 0.588 0.535 0.490 0.450 0414 0383 0.356

(cont’d on next page)

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers.
**From Grubbs, Table I, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values.

***From Grubbs, Table V, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values.

up some power against the alternative of two outliers when a multiple outlier procedure is used, the ad-
vantage is that one does not have to declare two outliers when in fact only one outlier is actually present;
this reduces the number of false positives. Rosner appeared to prefer the extreme studentized deviate
(ESD) procedure of Egs. 3-50 and 3-51 over other rejection rules he studied because they seemed to be the
best and were *“computationally reasonable”. By using Monte Carlo methods, Rosner (Ref. 22) found the
Ai(B) for certain sample sizes and the maximum number k of outliers suspected in the sample, and we give
these in Tables 3-7, 3-8, and 3-9. Example 3-9 illustrates the Rosner procedure.

Example 3-9:

Return to the data of Example 3-5 for the 15 observations concerning the semidiameter measurements
of Venus and apply Rosner’s outlier test procedure to determine whether —1.40 and 1.01 both should be
branded as outliers.

The 15 observations ranked in increasing order are —1.40, —0.44, —0.30, —0.24, —0.22, —0.13, —0.05,
0.06, 0.10, 0.18, 0.20, 0.39, 0.48, 0.63, and 1.01. Now we suspect that at most —1.40 and 1.01 are outliers,
so that we may as well put k = 2, and censor the two lowest values, —1.40 and —0.44, and the two highest
values, 0.63 and 1.01, for the purpose of calculating the trimmed mean g and trimmed standard deviation

b. We use —0.30, —0.24, —0.22, —0.13, —0.05, 0.06, 0.10, 0.18, 0.20, 0.39, and 0.48 in Egs. 3-48 and 3-49
to get

a =0.04273 and b = 0.2576.
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TABLE 3-6 (cont’d)
a=0.10*

n\k 1 1** 2 k%3 4 5 6 7 8 9 10

0.011 0.011

0.098 0.098 0.003 0.003

0.200 0.199 0.038 0.038

0.280 0.283 0.091 0.092 0.020

0.348 0350 0.148 0.148 0.056

0.404 0.405 0.200 0.199 0.095 0.038

0.448 0.450 0.248 0.245 0.134 0.068

10 0.490 0488 0.287 0.286 0.170 0.098 0.051

11 0.526 0.520 0.326 0.323 0.208 0.128 0.074

120555 0.548 0.361 0.355 0.240 0.159 0.103 0.062

130578 0.573 0.388 0.384 0.270 0.186 0.126 0.082

14 0600 0.594 0416 0411 0.298 0212 0.150 0.104 0.068

15 0.611 0.613 0436 0435 0.322 0.236 0.172 0.124 0.086

16 0.631 0.631 0.458 0.456 0.342 0260 0.194 0.144 0.104 0.073

17 0.648 0.646 0478 0.476 0.364 0282 0.216 0.165 0.125 0.092

18 0.661 0.660 0.496 0.494 0.384 0.302 0.236 0.184 0.142 0.108 0.080
19 0.676 0.673 0.510 0.511 0.398 0.316 0.251 0.199 0.158 0.124 0.094
20 0.688 0.685 0.530 0.527 0.420 0.339 0.273 0.220 0.176 0.140 0.110 0.085

O 0~ N AW

25 0732 0.732 0.591 0.489 0412 0350 0.296 0.251 0.213 0.180 0.152
30 0.766 0.637 0.523 0472 0411 0359 0.316 0.276 0.240 0.210
35 0.792 0.674 0.586 0.516 0.458 0410 0.365 0.328 0.294 0.262
40 0.812 0.702 0.622 0.554 0.499 0451 0.408 0.372 0.338 0.307
45 0.826 0.726 0.648 0.586 0.533 0.488 0447 0.410 0378 0.348
50 0.840 0.746 0.673 0.614 0.562 0.518 0.477 0442 0410 0.380

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers.
**From Grubbs, Table I, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values.
***From Grubbs, Table V, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values.

Reprinted with permission. Copyright © for portion of table by American Statistical Association. Copyright © for remainder of
table by Institute of Mathematical Statistics.

Hence proceeding to apply Egs. 3-50 and 3-51, one finds that

R =|-1.40 — 0.0427|/0.2576 = 5.60
and
R, =[1.01 — 0.0427|/0.2576 = 3.76.

From Rosner’s Table 3-7 for n = 15, we find that neither —1.40 nor 1.01 are rejectable at the 5% level, but
only —1.40 is an outlier at the 10% level! This is somewhat of a surprise because the Tietjen-Moore test
rejected both —1.40 and 1.01. Hence we will next examine Hawkins’ test and review this matter again in
Example 3-10.

In an extended study of the problem of multiple outliers, Hawkins (Ref. 21) points out that Rosner
(Ref. 20) apparently noticed the masking-type defect in the widely used Tietjen-Moore Ej statistic (Ref.
18) but did not actually highlight the finding specifically. Hawkins (Ref. 21) also states that the rationale
behind the Rosner scheme matches that which one would use intuitively. When trying to decide whether a
particular observation is an outlier, one should delete from the sample all observations already concluded
to be outliers. Also this is in consonance with the ideas behind the S?,/S? outlier type tests of Grubbs
(Ref. 9). Hawkins also points out that the Rosner ranking procedure leads for any number & of outliers to
a set of retained inliers with minimum variance as is the case for likelihood ratio test statistics. Finally,
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TABLE 3-7
PERCENTAGE POINTS OF ROSNER’S RST MANY OUTLIER TEST STATISTICS
R AND R, (Ref. 22)*

n = 10(5)20(10)50(25)100 and k = 2

n_ a=0.10 a=10.05 a=0.01
10 R, 7.35£0.102 8.90 & 0.146 13.38 = 0.748
R, 4.92 + 0.067 592+ 0.103 9.13 £ 0.407
15 R, 5.28 £ 0.63 6.01 = 0.056 8.10 £ 0.208
R, 3.84 £+ 0.045 4.31 £ 0.060 5.39+0.134
20 R, 4.64 & 0.043 5.18 £ 0.053 6.47 £ 0.182
R; 3.50 £ 0.024 3.81 £0.032 4.70 £ 0.095
30 R, 4.26 + 0.027 4.62 = 0.037 5.51 £0.108
R; 3.31 £ 0.021 3.57+0.017 4.15 £ 0.053
40 R, 4.04 £ 0.019 4.41 £+ 0.033 5.26 & 0.047
R, 3.23+£0.017 3.43 £+ 0.030 3.92 4+ 0.042
50 R, 3.98 £ 0.013 4.25 +0.019 498 + 0.081
Ry 3.20 £ 0.011 3.39+0.022 3.80 = 0.047
75 R 3.89 £ 0.016 4.16 £ 0.016 4.77 £ 0.074
R, 3.194+0.013 3.37 £ 0.029 3.72 £ 0.038
100 R, 3.83 £ 0.016 4.09 & 0.027 4.66 X 0.088
Ry 3.20 £ 0.012 3.34 £ 0.0076 3.74 £ 0.037

The * values are standard errors.
This is Table I of Rosner.
*For later tables associated with outlier procedures, see also Jain (Ref. 23).
Reprinted with permission. Copyright © by the American Statistical Association.

Hawkins (Ref. 21) allows for an extension of the family of statistics to include the considerations of Paul-
son (Ref. 24) and Quesenberry and David (Ref. 25) who provided for the case in which there may also be
available some additional information on the underlying standard deviation ¢ in the form of previous or
extraneous data to the immediate problem at hand. In such case, an extraneous sum of squares would
provide an independent estimator of ¢2 in the form of

U?/o? =x2(v) (3-54)
= chi-square with » df

where

U? = an independent sum of squares to estimate the variance
o2 = estimated population variance.

Hawkins then defines the extended statistic £ as

EX =@+ 0/(s+ 0 (3-55)
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TABLE 3-8
PERCENTAGE POINTS OF ROSNER’S RST MANY OUTLIER TEST STATISTICS
Ri, Ry, AND R; (Ref. 22)

n = 20(10)50(25)100 and k = 3

N _«=010 _«=005 _«=000
20 R, 5.91 £+ 0.059 6.60 = 0.079 8.19+0.137

R 4,50 £ 0.047 5.06 £ 0.052 6.34 = 0.151

Rs 3.73 £ 0.037 4.16 £ 0.046 5.22 £ 0.098

30 R 5.07 £ 0.037 5.60 £+ 0.063 6.88 & 0.093

R 3.93 1+ 0.028 4.32 £+ 0.037 5.09 £ 0.121

Rs 3.354+ 0.016 3.62 £+ 0.039 4 .27+ 0.076

40 R, 4.60 £+ 0.037 5.06 £+ 0.040 6.05 £ 0.103

R 3.68 + 0.021 3.92 £ 0.021 4.53 + 0.051

R3 3.20 £ 0.016 3.41 £ 0.024 3.82 + 0.063

50 R 4.43 + 0.033 4.76 = 0.049 5.68 £ 0.038

R 3.60 £ 0.014 3.82+0.018 4.55 1 0.086

R; 3.14 + 0.019 3.30 £ 0.014 3.77 = 0.047

75 Ry 4.18 & 0.024 4.46 + 0.034 5.10 £ 0.036

R> 3.47+0.013 3.67 = 0.019 4.10 £ 0.040

R3 3.08 = 0.0096 3.19 £ 0.012 3.57 £ 0.045

100 R, 4,12 + 0.019 4.37 £ 0.034 498 +0.120
R; 3.44 1+ 0.012 3.60 £ 0.022 3.88 = 0.039

Rs 3.10 £ 0.012 3.21+0.016 3.45 = 0.031

The =* values are standard errors.

This is Table 2 of Rosner.

Reprinted with permission. Copyright © by the American Statistical Association.

where .
S?” =inlier SS

§* =SS for the entire sample

as a suggested test statistic for the presence of k outliers for the additional or past information U on the
unknown ¢2. In the event that no external information on ¢ is available, one simply sets U = » = 0, and
the statistic £% becomes the inlier SS divided by the SS for the entire sample, i.e., the Grubbs (Ref. 9) type
test. By a Monte Carlo process Hawkins (Ref. 21) calculates tables of percentage points of the statistic £,
this information is in Table 3-10. It is believed that these new tables of percentage points of Hawkins
should be of rather wide application, and Example 3-10 is an example of their use.

Example 3-10:

Consider again the 15 observations on the semidiameter measurements of Venus in Example 3-5 and
also Example 3-8, where we used the Tietjen-Moore E; test and rejected both the —1.40 and 1.01 observa-
tions.

We have, as before, that the inlier sum of squares is 1.2409, and the total sample SS is 4.2496. Hence
for v = 0 there is no difference between the Tietjen-Moore test and that of Hawkins. We note that the 5%
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TABLE 3-9
PERCENTAGE POINTS OF ROSNER’S RST MANY OUTLIER TEST STATISTICS
R1, Rz, R3 and R4 (Ref 22)

n = 20(10)50(25)100 and k = 4

Lo Stais105 08 BciwI0A001 (=00l §
20 R 7.56 £ 0.083 8.52%t0.112 11.70 &= 0.340
R; 5.88 £ 0.042 6.53 £ 0.050 8.83 £ 0.263
R; 4.91 £ 0.038 5.46 x 0.064 7.23£0.199
R, 4.17 £ 0.035 4.65 1 0.056 6.03 £ 0.116
30 R, 5.90 £ 0.030 6.40 = 0.055 7.65 = 0.096
R, 4.63 = 0.030 5.01 £ 0.034 5.90 = 0.094
R; 3.95+0.037 4.27 £ 0.049 5.09 = 0.089
R4 3.50 + 0.024 3.76 £ 0.034 4.53 +0.101
40 R, 5.23 £ 0.036 5.67 = 0.066 6.85+ 0.264
R, 4.13£0.025 4.47 £ 0.037 5.24 £ 0.087
R; 3.60 1 0.031 3.82 £ 0.030 4.52 £ 0.079
Rs 3.25 £ 0.020 3.43 £ 0.027 3.99 + 0.043
50 R, 4.85 % 0.036 5.19 £ 0.063 6.18 £ 0.111
R, 3.95 £ 0.022 4.18 £ 0.028 4.86 £ 0.082
R; 3.46 £ 0.014 3.67 +0.019 4.20 £ 0.066
R, 3.14 £ 0.0098 3.30 = 0.021 3.75 £ 0.041
75 R 4.55 1 0.039 4.87 &+ 0.060 5.66 = 0.105
R; 3.73 £ 0.022 3.94 +0.018 4.41 £ 0.054
R; 3.31+£0.010 3.47 £ 0.020 3.81 £ 0.021
R4 3.04 £ 0.014 3.16 £ 0.019 3.50 = 0.034
100 R 4.43 £ 0.037 4.67 1+ 0.034 5.38 £ 0.091
R, 3.64 £ 0.016 3.80 1+ 0.018 4.28 £ 0.056
R, 3.27 £ 0.012 3.39+0.011 3.72 4+ 0.037
R 3.03 £ 0.011 3.14 +£0.012 3.41 +0.028

The &£ values are standard errors.
This is Table 3 of Rosner.

Reprinted with permission. Copyright © by the American Statistical Association.

level of ES for n = 15 in Table 3-101 is 0.3104, whereas that of Tietjen and Moore in Table 3-5 is 0.317.
Note that Hawkins indicates his Monte Carlo calculations are good to perhaps four decimal places. We
decide to reject both —1.40 and 1.01 because we believe the sum of squares type test may be superior to
the Rosner outlier test. This is our final conclusion for these data.

3-5.5.4 The Skewness and Kurtosis Tests for Qutliers

In our account of testing samples for multiple outliers, we should also record some discussion concern-
ing the related work of Ferguson (Refs. 15 and 16). In fact, the use of the skewness and kurtosis coeffi-
cients have long been studied as tests of normality and also as a way of screening samples for outliers. We
have already mentioned the matter of possible spurious values in the sample being masked by the
presence of other anomalous observations since this will have an effect on any significance tests to detect
gutlying observations. Outlying observations occur due to a shift in level (or mean) or a change in scale

* If the calculated ratio is less than the appropriate ratio given in Table 3-10, the values are rejected as outliers.
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DARCOM-P 706-103

(i.e., a change in variance of the observations), or both. Ferguson (Refs. 15 and 16) has studied the power
of the various rejection rules relative to both changes in level or scale. For several outliers and repeated
rejection of observations, Ferguson points out that the sample coefficient of skewness v,

Voi =V E = 9/l — 1))
(3-56)

= V{ E 6 = 9136 — D7

should be used for one-sided tests (change in level of several observations in the same direction). On the
other hand, the sample coefficient of kurtosis b,

by = n3 (x = B/[(n — 1)’
(3-57)
= 36— B*/[5(w — DT

is recommended for two-sided tests (change in level to higher and lower values) and also for changes in
scale (variance). In applying the skewness and/or kurtosis tests, the v&, or the b,, or both, are computed.
If their observed values exceed those for significance levels given in either Table 3-11 or Table 3-12, the
observation farthest from the mean is rejected and the same procedure is repeated until no further sample
values are judged as outliers. (As we have said, and is well-known, vB; and b, are also used as tests of nor-
mality.)

In Egs. 3-56 and 3-57 for v and b,, respectively, s is defined as generally used in this chapter with (n —
1) df, i.e.,

szém—ﬂﬁm—u (3-58)

The significance levels in Tables 3-11 and 3-12 for sample sizes of 5, 10, 15. and 20 (and 25 for b,) were
obtained by Ferguson (Refs. 15 and 16) on an IBM 704 computer using a sampling experiment or Monte
Carlo procedure. The significance levels for the other sample sizes are from E. . Pearson, ““Table of Per-
centage Points of vb; and b, in Normal Samples; a Round Off” (Ref. 26). For n = 25, Ferguson’s Monte
Carlo values of b, agree with Pearson’s computed values. Other tables of interest concerning vb, and b,
are those of Mulholland (Ref. 27).

The v, and b, statistics have the optimum property of being “locally” best against one-sided and two-
sided alternatives, respectively. The v&; test is good for up to 50% spurious observations in the sample for
the one-sided case, and the b, test is optimum in the two-sided alternatives case for up to 21% ““contami-
nation” of sample values. For only one or two outliers, however, the sample statistics of the previous
paragraphs (pars. 3-5.1 and 3-5.4) are recommended, and, in fact, Ferguson (Ref. 1) discusses in detail
their optimum properties of pointing out either one or two outliers.

Instead of the more complicated vb; and b, statistics. one can use the Tietjen and Moore tests dis-
cussed in par. 3-5.5.2 or Rosner’s test from par. 3-5.5.3 and Hawkins' test from par. 3-5.5.3 for the sample
sizes and percentage points given.

3-6  RECOMMENDED OUTLIER TESTS USING INDEPENDENT STANDARD
DEVIATION ESTIMATORS

We now consider tests of outliers for which the estimate of variance is independent of the suspected
values tested in samples. Such tests apply, for example, to analysis of variance tables and elsewhere. In
par. 3-5.5.3 we also mentioned some related concepts by Hawkins (Ref. 21).

Suppose that an independent estimate of the standard deviation is available from either previous data
or is otherwise available, as under null hypothesis situations for the analyses of variance (ANOVA’s).
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TABLE 3-11
SIGNIFICANCE LEVELS FOR +/b;
e Si
Significance Sampiiize
Level, % 5° 10° 15° 20° 25 30 35 40 50 60
1 1.34 1.31 1.20 1.11 1.06 0.98 0.92 0.87 0.79 0.72
5 1.05 0.92 0.84 0.79 0.71 0.66 0.62 0.59 0.53 0.49

“These values were obtained by Ferguson (Refs. 15 and 16) using a Monte Carlo procedure.

Reprinted with permission. Copyright © for portion of table by Biometrika Trustees; copyright © for remainder of table by
University of California Press.

TABLE 3-12
SIGNIFICANCE LEVELS FOR b,
le Si
Significance 2alliple Sizers
Level, % 5° 10° 15¢ 20° 25° 50 75 100
| 3.11 4.83 5.09 5.23 5.00 4.88 4.59 4.39
5 2.89 3.85 4.07 4.15 4.00 3.99 3.87 3.77

“These values were obtained by Ferguson (Refs. 15 and 16) using a Monte Carlo procedure.

Reprinted with permission. Copyright © for portion of table by Biometrika Trustees; copyright © for remainder of table by
University of California Press.

These estimates of the true ¢ may be from a single sample of previous similar data, or they may be the re-
sult of combining estimates from several such previous sets of appropriate data. In any event each such
estimate will have df equal to one less than the sample size or group on which it is based. Thus the proper
combined estimate is a weighted average of the several values of s; the weights are proportional to the re-
spective df. The total df in the combined estimate then is the sum of the individual df. When one uses an
independent estimate of the standard deviation s, based on » df, the useful test criterion recommended
for judging a low or high outlier is either

, )—C_X1
Ty

(3-59)
Sy

or

Xn— X
=

(3-60)
Sy
where

v = total number of df in the independent estimate s, of o.

The critical values for T and 7, for the 5% and 1% significance levels are from David (Ref. 28) and are
given in Table 3-13. In Table 3-13 the notation » = df indicates the total number of df associated with the
independent estimate of the standard deviation ¢, and » indicates the number of observations in the sam-
ple under study.

Another very useful set of tables for testing samples for outlying observations using an independent s,

is that of Halperin, Greenhouse, Cornfield, and Zalokar (Ref. 29). They have tabulated the percentage
points of the statistic d, where
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TABLE 3-13
CRITICAL VALUES FOR 7" WHEN STANDARD DEVIATION s, ISINDEPENDENT .
OF PRESENT SAMPLE (Ref. 28)
n
v =df 3 4 5 6 7 8 9 10 12
1% Point
10 2.78 3.10 3.32 3.48 3.62 3.73 31.82 3.90 4.04
11 2.72 3.02 3.24 3.39 3.52 3.63 3.72 3.79 393
12 2.67 2.96 3.17 3.32 3.45 3.55 3.64 3.71 3.84-
13 2.63 2.92 3.12 3.27 3.38 3.48 3.57 3.64 3.76
14 2.60 2.88 3.07 3.22 3.33 3.43 3.51 3.58 3.70
15 2.57 2.84 3.03 3.17 3.29 3.38 3.46 3.53 3.65
16 2.54 2.81 3.00 3.14 3.25 3.34 3.42 3.49 3.60
17 2.52 2.79 2.97 3.11 3.22 3.31 3.38 345 3.56
18 2.50 2.77 2.95 3.08 3.19 3.28 3.35 3.42 3.53
19 2.49 2.75 2.93 3.06 3.16 3.25 3.33 3.39 3.50
20 2.47 2.73 2.91 3.04 3.14 3.23 3.30 3.37 3.47
24 2.42 2.68 2.84 2.97 3.07 3.16 3.23 3.29 3.38
30 2.38 2.62 2.79 2.91 3.01 3.08 3.15 3.21 3.30
40 2.34 2.57 2.73 2.85 2.94 3.02 3.08 3.13 3.22
60 2.29 2.52 2.68 2.79 2.88 2.95 3.01 3.06 3.15
120 2.25 2.48 2.62 2.73 2.82 2.89 2.95 3.00 3.08
o 2.22 2.43 2.57 2.68 2.76 2.83 2.88 2.93 3.01
5% Points
10 2.01 2.27 2.46 2.60 2.72 2.81 2.89 2.96 3.08
11 1.98 2.24 2.42 2.56 2.67 2.76 2.84 2.91 3.03
12 1.96 2.21 2.39 2.52 2.63 2.72 2.80 2.87 2.98
13 1.94 2.19 2.36 2.50 2.60 2.69 2.76 2.83 2.94
14 1.93 2.17 2.34 2.47 2.57 2.66 2.74 2.80 2.91
15 1.91 2.15 2.32 2.45 2.55 2.64 2.71 2.77 2.88
16 1.90 2.14 2.31 2.43 2.53 2.62 2.69 2.75 2.86
17 1.89 2.13 2.29 2.42 2.52 2.60 2.67 2.73 2.84
18 1.88 2.11 2.28 2.40 2.50 2.58 2.65 2.71 2.82
19 1.87 2.11 2.27 2.39 2.49 2.57 2.64 2.70 2.80
20 1.87 2.10 2.26 2.38 2.47 2.56 2.63 2.68 2.78
24 1.84 2.07 2.23 2.34 2.44 2.52 2.58 2.64 2.74
30 1.82 2.04 2.20 2.31 2.40 2.48 2.54 2.60 2.69
40 1.80 2.02 2.17 2.28 2.37 2.44 2.50 2.56 2.65
60 1.78 1.99 2.14 2.25 2.33 2.41 2.47 2.52 2.61
120 1.76 1.96 2.11 2.22 2.30 2.37 2.43 2.48 2.57
oo 1.74 1.94 2.08 2.18 214 2.33 2.39 2.44 2.52

Reprinted with permission. Copyright © by Biometrika Trustees.
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d= max[(xn 1 )—C> ; <f = XI>] (3-61)
s, s,

and the standard deviation s, is calculated from past or other data independent of the current sample for
which outliers are being tested. The authors refer to their test as that for the studentized maximum abso-
lute deviate in normal samples. The statistic d can be seen to be that of the two-sided alternative Student-
type test of Nair (Ref. 30) or Grubbs (Ref. 9), in which the scaling statistic s, of the denominator must be
independent of the numerator residuals.

As pointed out by Halperin, Greenhouse, Cornfield, and Zalokar (Ref. 29), their tables, reproduced
here as Table 3-14, may be used to test whether the largest observation without regard to sign is too large,
or the tables may be used for multiple significance tests of a set of n sample means arising from inde-
pendent normal populations possibly with different true means. Thus Table 3-14 may be used in many
ANOVA test procedures to determine or judge either high or low treatment effects, for example.

For each entry in Table 3-14 and for any given sample size » and number of df », the authors of Ref. 29
list upper and lower values, these being due to the computational procedure available (see Section 3 of
Ref. 29). The authors point out that the lower values are known to be closer to the true, or correct, per-
centage points; accordingly, they recommend using the lower tabulated levels of significance in most
cases. In fact, the actual difference in exact probabilities between the two tabulated values appears to be
in the second decimal place, except for the rather small sample sizes, and consequently is of little practical
interest.

The reader might note that so far in the outlier-type detection procedures of this paragraph, informa-
tion in the particular sample tested for outliers is not used. Therefore, one would wonder whether there
would be any gain in information or perhaps in power to detect spurious values if the variability measure
for the current sample were also included in the test. In this connection, the reader perhaps noticed that
just this rather useful concept was available for application in Table 3-10 prepared by Hawkins (Ref. 21)
for multiple tests of outliers. Hence with reference to the studentized residuals-type tests of outliers, Haw-
kins and Perold (Ref. 31) have prepared a table of percentage points or critical levels of the statistic

* Xn = X\ /X — Xi
B" = max|(x; — X)|/§ = max < >, (3-62)
Su Sy
where
Si= % (xi— )+ U=84+U (3-63)
and
Ulo* =vs,jo" = x, (3-64)

Thus and as before, the quantity U is an independent o’x; variate with » df if such information is avail-
able for use. Note also that $? is the total SS for the current sample of interest, which may contain con-
taminated values. When only data on the current or same sample are available, U (and ») are taken as
zZero.

Hawkins and Perold’s critical values or percentage points of their statistic B* are given in Table 3-15.

Summarizing somewhat at this point, we note that there are a variety of useful tests and related tables
to detect outliers in samples for the case in which only an independent estimate of the underlying sigma is
used or for the case in which the independent estimate is used along with the current sample information.

Now-—that we have covered David’s statistic (Ref. 28), using an independent estimate of the standard
deviation to test for an outlier; also the similar d statistic of Halperin, Greenhouse, Cornfield, and Zalo-
kor (Ref. 29); and finally the augmented B* statistic of Hawkins and Perold (Ref. 31)—it would be of in-

terest to give an illustrative example. For this purpose, we will return to the interlaboratory, or round
robin, test data of Table 2-7.
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Example 3-11:

In the interlaboratory test of par. 2-10 for measurements of the amount of lead in gasoline, it seemed
probable that the levels of measurement of the Du Pont and Mobil laboratories were low compared to
those of the other laboratories. Is there any statistical evidence to back up this hypothesis?

Since, under the assumptions of the ANOVA procedure, the among-laboratory and within-laboratory
SS are indeperident, we will first use only the residual or within-laboratory SS to estimate sigma. In this
connection, we have that g, = 0.50 based on the within-laboratory SS of 2.50 and » = 10 df.

The observed levels or average measurements of the amount of lead in gasoline (multiplied by 1000) are
as follows:

Du Pont Mobil EPA Ethyl Ford AMOCO Octel
23.3 240 25.7 26.0 26.7 27.5 28.0.

We note, however, that these were based on different sample sizes, i.e., either 2 or 3 per laboratory. A
very satisfactory, approximate way to solve the problem posed is to note that the grand mean for all the
laboratories is X = 438/17 = 25.76; therefore, we will consider the largest deviations from this value. In
fact, we may as well pool the readings of Du Pont and Mobil since we will test both as low outliers and
obtain their average as

(70 + 48) /5 = 23.60.
Hence we will use an approximate test on the difference
25.76 — 23.60 = 2.16

and we must determine the estimated standard error of this unevenly weighted difference. Under the null
hypothesis of no differences in laboratory levels and hence the use of only the within-laboratory sigma for
testing for outliers, we note that the stated difference is really

118/5 — [(118) + (438 - 118)]/17 = ( ‘? -11—7)(118) *%(320) =%(118)— 1‘—7(320)= 2,16

where 118 is the sum of 5 observations of Du Pont and Mobil, and 320 is the sum of the remaining 12 ob-
servations. Thus since o2 is the variance of an individual laboratory reading, the estimated variance of the
stated difference, i.e., —2.16, is

2

oX(diff) = (é—?—)z(saiw (&) (1209 =0.141.

This means that the equivalent sample size for the numerator of a Student’s r-type statistic to use is about
1/0.141 = 7.09. Hence we may take our studentized statistic 7 to be approximately

1~ -2.16/(+/0.141 6)) = -2.16/(0.5/~/7.09) = ~11.50

which for » = 10 df is very highly significant from either Table 3-13 or Table 3-14. There seems to be little
doubt, therefore, on the basis of the ANOVA residual or error variance, that the readings of Du Pont and
Mobil are significantly low. The ANOVA of Table 2-7 established a very significant difference between
the among-laboratory and within-laboratory variations, i.e., a huge ratio of 7.093/0.25 = 28.37 to 1 on
the variance scale or 5.33 to 1 on the sigma scale.

Ordinarily, Hawkins’ B* test might be applied to testing whether the Du Pont and Mobil laboratory
levels are low if we could pool the among-laboratory and within-laboratory sum of squares. We can at
least illustrate the principle in spite of the fact that there is a large difference between the among- and with-
in-laboratory variances. Thus we found the sum of squares (about the table mean) among columns based
on an individual reading to be 42.56 and that of the within or residual sum of squares U to be 2.50. Hence
according to Eq. 3-63, we obtain
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S§2=42.56 + 2.50 = 45.06

where the v of Eq. 3-64 has the value, » = 10 df. Since the average 23.60 was based on the equivalent of
about 7.09 observations and S? = 45.06 is for an individual observation, we take Hawkins’ B* as approxi-
mately B*~ v7.09 (x —x1)/S = 2.66 (25.76 — 23.60) /6.71 = 0.86, where we used the grand mean x and
the average of the two lowest laboratories. Referring to Table 3-15 for critical values of Hawkins’ B*, we
find for n = 6 laboratories (we combined Du Pont and Mobil) and » = 5 df that the 0.001 percentage
point is 0.8207, whereas for » = 15, the 0.001 probability level is 0.6674. Therefore, for » = 10 we would
even reject the null hypothesis of no difference among laboratory measurements under the (questionable)
pooling procedure. In any event, it certainly seems that we can now settle the question raised in Table 2-7;
namely, the measurements of lead in gasoline by Du Pont and Mobil are significantly low, and an investi-
gation is called for to “bring them into line”. (All laboratories, on the average, still measure a little low.)

It is such an investigation of laboratory measurement levels that is called for concerning the whole mat-
ter of testing for outlying laboratories. Thus we saw in Table 2-7 that the within, residual, or repeatability
sigma amounted to 0.50 and the among-laboratory sigma had a value of 1.69, so that the reproducibility
sigma for an individual measurement taken at a randomly selected laboratory became 1.76. This shows
that the residual sigma representing precision at one or a single laboratory is quite inconsequential be-
cause practically all the variability comes from the fact that the laboratory levels are not in agreement,
and, therefore, there is indeed quite a problem to bring them together or to calibrate their measurement
procedures or instruments. This is at the heart of the whole matter of procedures for testing for aberrant
readings, and we see that it becomes urgent to investigate first and to do something about the results com-
ing from Du Pont and Mobil. In fact, it is only through such investigations or through calibration pro-
cedures that we can hope to reduce the among-laboratory sigma of 1.69 and thereby gain some improve-
ment in the precision of measurement of the amount of lead in gasoline.

In addition, it is easy to note that although we had no problem really in the choice of the “right”
underlying estimate of sigma to test for outliers in single samples, this is not the case for ANOVA pro-
cedures where two or more components of variance may be real and quite different, as in Table 2-7. In
fact, we believe that the among-laboratory sigma may not be brought into line with the almost negligible
residual sigma of only 0.50. That is, we should expect that the among-laboratory sigma will most always
be larger than the within value at a single laboratory, and, in fact, several times the latter value. Hence we
should expect that this would be the usual case and that the real or basic problem toward improving pre-
cision and accuracy would revolve around properly correcting for the different measurement levels at the
various laboratories. Having observed this, we will proceed with another, but more extensive, example
(Example 3-12) on interlaboratory testing and will show that our thoughts on the matter are well verified
and justified.

Example 3-12:

[n an analysis of interlaboratory test procedures, data representing normalities of sodium hydroxide
solutions were determined by 12 different laboratories. In all the standardizations a 0.1 normal sodium
hydroxide solution was prepared by the Standard Methods Committee using carbon-dioxide-free distilled
water. Potassium acid phthalate (PAP), obtained from the National Bureau of Standards, was used as the
test standard at all of the participating laboratories in the round robin test.

Test data by the 12 laboratories are given in Table 3-16. The PAP readings have been coded to simplify
the calculations. The variances among the three readings within all laboratories were found to be homo-
geneous. A one-way classification in the ANOVA was first analyzed to determine whether the variation in
laboratory results (averages) was statistically significant. This variation was found to be very significant
and indicated a need for action, so tests for outliers were then applied to isolate the particular laboratories
whose results gave rise to the significant variation.

Table 3-17 shows that the variation between laboratories is highly significant, exhibiting an F ratio of
48.61. To test whether this (very significant) variation is caused by one laboratory (or perhaps two) that
obtained *‘outlying” results (i.e., perhaps showing nonstandard technique), we can test the laboratory
averages for outliers. From the ANOVA we have an estimate of the within or residual variance of an indi-
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TABLE 3-16
STANDARDIZATION OF SODIUM HYDROXIDE SOLUTIONS AS DETERMINED
. BY PLANT LABORATORIES (Ref. 10)

Standard Used: Potassium Acid Phthalate (PAP)

Deviation of
(PAP 0.096000) Average from
Laboratory X10’ Sums Averages Grand Average

I 1.893
1.972
1.876 5.741 1.914 +0.043

2 2.046
1.851
1.949 5.846 1.949 +0.078

3 1.874
792
1.829 5.495 1.832 —0.039

4 1.861

1.998

1.983 5.842 1.947 +0.076
3 1.922

1.881

1.850 5.653 1.884 +0.013

6 2.082

1.958
2.029 6.069 2.023 +0.152

7 1.992
1.980
2.066 6.038 2.013 +0.142

8 2.050

2.181

1.903 6.134 2.045 +0.174
9 1.831

1.883

1.855 5.569 1.856 —0.015
10 0.735

0.722

0.777 2.234 0.745 —1.126

11 2.064

1.794

1.891 5.749 1.916 +0.045
12 2.475

2.403

2.102 6.980 2.327 +0.456

Grand Sum 67.350
Grand Average 1.871

. Reprinted with permission. Copyright © by the American Statistical Association.
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vidual reading as 0.008793 based on 24 df. The estimated standard deviation of the average of three read-
ings is therefore 0.094/v3 = 0.054. The complete ANOVA is given in Table 3-17 and, due to the huge
variation resulting from some differences in levels of measurement for some of the laboratories, we must
now conduct an analysis to determine just which laboratories have unacceptable levels of measurement.

In this example we are not concerned about any variation in number of observations per laboratory
since they are all three in number, and hence no adjustment for the 50% variation from two to three ob-
servations is needed as in Example 3-11. Also since we illustrated the Hawkins technique in Example
3-11, we may as well use David’s studentized statistic or the d statistic of Halperin, Greenhouse, Corn-
field, and Zalokar, and accompanying tables of percentage points. Since the estimate of within- laboratory
variation is independent of any difference between laboratories, we can use the David statistic 77 of Eq.
3-59 and T, of Eq. 3-60 to test for outliers. An examination of the deviations of the laboratory averages
from the grand average indicates that Laboratory 10 obtained an average reading much lower than the
grand average and that Laboratory 12 obtained a rather high average level of measurement compared to
the overall average. First, to test whether Laboratory 10 is an outlier, we calculate

, _ _1.871-10.745

7 0.054

= 20.9.

The value of T7 is, from Table 3-13, obviously significant at a very low level of probability (P <<0.01).
We conclude, therefore, that the test methods of Laboratory 10 should be investigated and corrected.

Excluding Laboratory 10 and at the risk of increasing the Type [ error*, we compute a new grand
average of 1.973 and test whether the results of Laboratory 12 are outlying. We have that

o 21913
T 0054

and this value of 7, is significant at P<<0.01.We conclude that the procedures of Laboratory 12 should
also be investigated.

Concerning Laboratories 10 and 12, we could also have used Table 3-14 or, that is, the maximum inde-
pendently studentized statistic d of Halperin, Greenhouse, Cornfield, and Zalokar (Ref. 29). In this con-
nection we see that for Laboratory 10, d = T{ = 20.9, and using Table 3-14 for n = 12 and v = 24, it is
quite clear that Laboratory 10 is an outlier. Moreover, repeating this same test after eliminating Labora-
tory 10, we see also that Laboratory 12 has too high a level of measurement and should be investigated.
In summary, we find that the 4 statistic establishes that Laboratories 10 and 12 are outliers and should be
investigated. Furthermore, Halperin, Greenhouse, Cornfield, and Zalokar (Ref. 29) point out in their ap-
pendix that the chance that the statement made concerning Laboratories 10 and 12 is incorrect when the
null hypothesis of no differences whatever is true is clearly 0.01—our specified level of testing. Also when
the null hypothesis is false, this chance is less than 0.01, even for multiple tests.

To verify that the remaining laboratories did indeed obtain homogeneous results, we might repeat the
analysis of variance omitting Laboratories 10 and 12. The calculations give the results shown in Table
3-18.

For this analysis, the variation between laboratories is not significant at the 5% level, and we conclude
that all except Laboratories 10 and 12 exhibit the same capability in testing procedure.

In conclusion, there should be a systematic investigation of test methods for Laboratories 10 and 12 to
determine why their test procedures are apparently different from the other ten laboratories.

* Determination and control of the Type I error, especially with the aid of the Bonferroni inequalities, is discussed in
Chapter 4.
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TABLE 3-17
ANALYSIS OF VARIANCE FOR THE DATA OF TABLE 3-16

Degrees of Sum of
Freedom Squares Mean Square
Source of Variation (df) (SS) (MS) F Ratio
Between laboratories 11 4.70180 0.4274 F=48.61
Within laboratories 24 0.21103 0.008793 (highly significant)
P <0.001
Total 35 4.91283

Reprinted with permission. Copyright © by the American Statistical Association.

TABLE 3-18
ANALYSIS OF VARIANCE OMITTING LABORATORIES 10 AND 12

Degrees of Sum of

Freedom Squares Mean Square
Source of Variation (df) (SS) (MS) F Ratio
Between laboratories 9 0.13889 0.01543 F = 2.35 (not significant)
Within laboratories 20 0.13107 0.00655 Fo.05(9,20) = 2.40

Fo.01(9,20) = 3.45

Total 29 0.26996

Reprinted with permission. Copyright © by the American Statistical Association.

3-7 RECOMMENDED CRITERIA FOR KNOWN STANDARD DEVIATION

Frequently, the population standard deviation o may be known with sufficient accuracy and
hence does not have to be estimated.
In such cases a statistic of the form

T, = (x—xi)/o (3-65)
or

e = (Xn — X)/0 (3-66)

may be used to test for simple outliers. Table 3-19 gives the critical values of Ty, and Ty, . We illus-
trate this with Example 3-13.

Example 3-13 (¢ known):

In the early days of satellites, the passage of the Echo 1 (Balloon) Satellite was recorded on star
plates when it was visible. Photographs were made by means of a camera with the shutter automati-
cally timed to obtain a series of points for the Echo path. Since the stars were also photographed at
the same times as the Satellite, all the pictures showed star trails and were thus called star plates.

The x- and y-coordinates of each point on the Echo path were read from a photograph with a stereo-
comparator. To eliminate bias of the reader, the photograph was placed in one position and the coordi-
nates were read; then the photograph was rotated 180 deg and the coordinates reread. The average of the
two readings was taken as the final reading. Before any further calculations were made, the readings had
to be screened for gross reading or tabulation errors. This was done by examining the difference in the
readings taken at the two positions of the photograph.
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TABLE 3-19
CRITICAL VALUES OF T/, AND 7,,, WHEN THE POPULATION STANDARD .
DEVIATION ¢ IS KNOWN (Ref. 10)
Number of 5% 1% 0.5%
Observations Significance Significance Significance

n Level Level Level

2 1.39 1.82 1.99

3 1.74 2.22 2.40

4 1.94 2.43 2.62

5 2.08 2.57 2.76

6 2.18 2.68 2.87

7 2.27 2.76 2.95

8 2.33 2.83 3.02

9 2.39 2.88 3.07
10 2.44 2.93 3.12
11 2.48 2.97 3.16
12 2.52 3.01 3.20
13 2.56 3.04 3.23
14 2.59 3.07 3.26
15 2.62 3.10 3.29
16 2.64 3.12 3.31
17 2.67 3.15 3.33
18 2.69 3.17 3.36
19 2.71 3.19 3.38
20 2.73 3.21 3.39
21 2.75 3.22 3.41
22 2.77 3.24 3.42
23 2.78 3.26 3.44
24 2.80 3.27 3.45
25 2.81 3.28 3.46

Reprinted with permission. Copyright © by the American Statistical Association.

Table 3-20 records a sample of six readings made by the Ballistic Research Laboratories (BRL) at the
two positions and the differences in these readings. On the third reading the differences are rather large.
Has the operator made an error in placing the cross hair on the point?

For this example an independent estimate of ¢ is available since extensive tests on the stereo-
comparator have shown that the standard deviation in reader’s error is about 4 um. The standard devia-
tion of the difference in two readings is therefore

VEF B =\32= 5T um.

For the six readings (Table 3-20) the mean difference in the x-coordinates is Ax = 3.5, and the mean
difference in the y-coordinates is Ay = 1.8. By using Eq. 3-66 for the questionable third reading, we have
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TABLE 3-20
STAR PLATE MEASUREMENTS, pm*

x-coordinate y-coordinate
Position 1 Position 1
Position 1 + 180 deg Ax Position 1 + 180 deg Ay
-53011 —53004 -7 70263 70258 +5
—38112 —38103 -9 —39729 —39723 -6
—2804 —2828 +24 81162 81140 +22
18473 18467 +6 41477 41485 -8
25507 25497 +10 1082 1076 +6
87736 87739 -3 —7442 —7434 —8

*These data represent a sample of typical measurements taken by the former Ballistic Measurements Laboratory of the
BRL many years ago.

Reprinted with permission. Copyright © by the American Statistical Association.

From Table 3-19 we see that for n = 6 values of Ti~ as large as the calculated values would occur by
chance less than 1% of the time (actually even less than 0.5%) so that a significant reading error seems to
have been made on x- and y-coordinate readings for the third point.

A great number of points are read and automatically tabulated on star plates. Here we have chosen a
very small sample of these points. In actual practice the tabulations would probably be scanned quickly
for very large errors, such as tabulator errors; then some rule-of-thumb, such as +3 standard deviations
of reader’s error, might be used to scan for outliers caused by operator error. (Note that the values of
Table 3-19 vary between about 1.40¢ and 3.50¢.) In other words, the data are probably too extensive to
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